
RFNoC™ Deep Dive: Host Side
Martin Braun

5/28/2015



 Typical application is run and controlled from host-

based process (e.g. GNU Radio)

 Setting up heterogeneous processing in a simple 

fashion requires a lot of software-controlled 

con/guration

Why Host Development?



Example: Mixing Platforms

 Maintaining transparent modularity requires simple 

access to block settings, regardless of platform

 All controls must be available within the GNU Radio 

process

 GNU Radio does not control out-of-domain blocks

RFNoC

GNU Radio



 Con/gure connections between blocks
– Set up 3ow control, con/gure stream IDs

 Con/gure block-speci/c settings (e.g. FFT size, FIR 

taps, PLL loop bandwidths...)
– Map settings bus addresses to human-readable 

settings

 Initiate streaming for domain boundary crossings
– Abstract transport type (Ethernet, PCIe, AXI)

 Provide API calls for block-speci/c operations
– Direct access to FPGA registers is available, but 

might not be the nicest way to con/gure blocks

What does the Host do?



 Maintains graph representation of active RFNoC 

blocks within UHD context

 Host-side checking of data type matching

 Easy con/guration of block connections

 Commands can be passed on to other RFNoC 

blocks (e.g. streaming commands)

What does the Host do?



 What happens when we call 

connect()?

1. Identify port numbers on source and destination 

2. Check stream signatures match (type, vector length 

etc.)

3. Read destination port address, generate SID, write to 

source block 

4. Read packet size from source block, read input bu?er 

size from destination

5. Set 3ow control registers on source and destination 

(depending on transport type between blocks)

Example: Connection Setup



RFNoC Stack

GRC Bindings (XML)

GNU Radio Integration

Block Code (Python / C++)

Block Declaration (XML / NocScript) Block Controller (C++)

UHD IntegrationUHD Integration

FPGA Integration

Verilog / VHDL / CoreGen / IP



RFNoC Stack (Simple)

GRC Bindings (XML)

GNU Radio Integration

Default Block

Block Declaration (XML / NocScript) Default Block Controller

UHD IntegrationUHD Integration

FPGA Integration

Verilog / VHDL / CoreGen / IP



RFNoC Stack (Even Simpler)

Your Application here!

Block Declaration (XML / NocScript) Default Block Controller

UHD IntegrationUHD Integration

FPGA Integration

Verilog / VHDL / CoreGen / IP



Let's walk the Stack: UHD

0. Assume that IP core is ready, tested, and synthesized

4. Export GRC bindings

GNU Radio Integration

3. Interface with GNU Radio Block

1. Write Block Declaration
2. (Maybe) Write Block 

Controller Class

UHD IntegrationUHD Integration



 XML File

 Blocks are identi/ed by their NoC-ID

 Description of block for UHD
– Argument List (e.g. FFT size)

– Input- and output ports (data types, vector 
length, packet size)

– Settings- and readback registers

 NocScript: Add control code

 Example: FFT Block

Block Declaration



 Very simple DSL speci/c to block con/guration

 Statically typed, quasi-functional

 Few basic types: Integers, Strings, Doubles, Vectors 

 Lots of uppercase and parentheses

 Allows basic access to block arguments and 

settings registers

 Basic arithmetic and logic operations available

NocScript



Let's walk the Stack: UHD

0. Assume that IP core is ready, tested, and synthesized

4. Export GRC bindings

GNU Radio Integration

3. Interface with GNU Radio Block

1. Write Block Declaration
2. (Maybe) Write Block 

Controller Class

UHD IntegrationUHD Integration



 C++ Code

 Provides FPGA access

 Represents block in RFNoC-Graph

 Default Block Control will do vast majority of 

required tasks

 Own implementation may not be required

 Example: FFT Block

Block Control Classes



 Whenever XML + NocScript are not suDcient!

 Complex operations that are easier expressed in 

C++-Code than XML + NocScript
– Example: Radio Controls

 Note: Writing custom block controllers requires re-

compilation of UHD + your own library, whereas 

XML + NocScript is interpreted at runtime

 Example: FFT Block
– Public header

– Implementation /le

When to write own class?



Interlude: Lookup Process

Crossbar

Ingress Egress Interface

USRP Hardware Driver

?

H
O

S
T

U
S

R
P

 F
P

G
A

? ?

 UHD queries NoC-ID Registers on Block



Interlude: Lookup Process

Crossbar

Ingress Egress Interface

USRP Hardware Driver

0xFF70

H
O

S
T

U
S

R
P

 F
P

G
A

? ?

 Query NoC-ID Register on Block

 Look up NoC-ID in XML /les



Interlude: Lookup Process

Crossbar

Ingress Egress Interface

USRP Hardware Driver

FFT Block

H
O

S
T

U
S

R
P

 F
P

G
A

? ?

 Query NoC-ID Register on Block

 Look up NoC-ID in XML /les



Interlude: Lookup Process

Crossbar

Ingress Egress Interface

USRP Hardware Driver

FFT Block

H
O

S
T

U
S

R
P

 F
P

G
A

?

 Query NoC-ID Register on Block

 Look up NoC-ID in XML /les

 Find block controller class in registry

?



GNU Radio Integration

0. Assume that IP core is ready, tested, and synthesized

4. Export GRC bindings

GNU Radio Integration

3. Interface with GNU Radio Block

1. Write Block Declaration
2. (Maybe) Write Block 

Controller Class

UHD IntegrationUHD Integration



 gr-uhd: Stable GNU Radio bindings for all UHD 

products

 gr-ettus: Out-of-tree module for experimental code, 

subject to change

 As RFNoC matures, code will migrate from gr-ettus 

to gr-uhd

 gr-ettus will serve as example for OOT projects 

including RFNoC

 Now, gr-ettus provides examples for GNU Radio / 

RFNoC blocks

 Available online: 

http://github.com/EttusResearch/gr-ettus.git

gr-uhd & gr-ettus



 gr-ettus provides a generic block that handles most 

cases of RFNoC blocks (gr::ettus::rfnoc_generic)

 In all other cases, derive block from 

gr::ettus::rfnoc_block to make life easier
– Example: rfnoc_window_cci has restrictions that 

RFNoC has not

 Note: RFNoC/GNU Radio blocks hold reference to 

USRP object, but do not create it (must be 

generated externally and passed in)

 gr_modtool still works!

gr::ettus::rfnoc_*



GNU Radio Integration

0. Assume that IP core is ready, tested, and synthesized

4. Export GRC bindings

GNU Radio Integration

3. Interface with GNU Radio Block

1. Write Block Declaration
2. (Maybe) Write Block 

Controller Class

UHD IntegrationUHD Integration



 XML File

 Describes GNU Radio Block to GNU Radio 

Companion

 Using gr::ettus::rfnoc_generic does not prohibit 

writing custom GRC bindings
– Example: FFT Block

 High similarity to block declaration /le: In the 

future, we might provide a tool to convert one to 

the other

GRC Bindings



 RFNoC™ requires some host-side modi/cations

 Best case, this entails writing 1 or 2 XML /les

 Worst case, this also means adding up to 2 C++ 

/les with well-documented and simple APIs

 Design goal of RFNoC is to simplify host-side 

workload as much as possible

 Tools exist to make it as easy as possible (e.g. 

gr_modtool)

Conclusion


	Slide 1
	Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	RFNoC Architecture
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

