
1

GNU Radio Workshop

The Open-Source Toolchain for the USRP

Neel Pandeya
neel.pandeya@ettus.com

Nate Temple
nate.temple@ettus.com

Version 2019-05-07

Agenda (1)

2

● Introduction to SDR concepts
● Overview of USRP product family / architecture
● Overview of Ettus Research / NI Product mapping
● Discussion of SDR toolchains
● Overview of Radio Transport Protocols
● Overview of Linux Installation
● Overview of using Git/Github
● Discussion of programming options (C++, Python, GRC, LabView, Matlab)
● Detailed overview of UHD and GNU Radio
● Building, installing, and configuring UHD on Linux
● Hands-on step-by-step discussion of the "Getting Started" procedure
● Connecting to, and communicating with, the USRP over USB and Ethernet
● Verifying the correct operation of the USRP device
● Overview of managing multiple UHD installations
● Brief discussion on Packet Flow Errors
● Using the UHD API from C++
● Using Wireshark for debugging
● Discussion on Motherboard and Daughterboard EEPROMs

Agenda (2)

3

● Detailed overview of GNU Radio
● Building, installing, and configuring GNU Radio on Linux
● Overview of managing multiple GNU Radio installations, and removing installations
● Overview of DTMF
● Brief example of DTMF with GNU Radio
● Verifying USRP function using GNU Radio
● Using GNU Radio and GRC
● Overview of the components of GNU Radio
● Creating and running flowgraphs
● Using GNU Radio from Python
● Hands-on demo of introduction flowgraphs, filters
● Overview of channelizing a signal with the Frequency Xlating FIR Filter
● Overview of transmitting a signal with GNU Radio
● Overview of GNU Radio Out-of-Tree Modules / CGRAN
● Creating a GNU Radio Block / OOT
● Implementing an FM receiver in GRC
● Implementing an FM transmitter in GRC
● Implementing an full duplex FM transceiver in GRC
● Implementing an dual channel FM receiver in GRC

Agenda (3)

4

● Overview of gr-rds installation
● Implementing an FM+RDS receiver in GRC
● Implementing an FM+RDS transmitter in GRC
● Implementing an OFDM/BPSK receiver in GRC
● Implementing an OFDM/BPSK transmitter in GRC
● Overview of gr-osmosdr installation
● Overview of GQRX and installation
● Using GQRX
● Overview of gr-paint and installation
● Hands-on demo of gr-paint
● Overview of gr-fosphor and installation
● Brief examples of RFNoC based gr-fosphor
● Running gr-fosphor
● Overview of Inspectrum and installation
● Examples of Inspectrum with various signals
● Remote replay attack demo
● Hands-on demo of analyzing various signals with Inspectrum
● Overview of various Signal Identification resources

Agenda (5)

5

● Overview of ADS-B
● Overview of gr-air-modes and installation
● Live demo of gr-air-modes
● Discussion, overview, and demonstration of E310/E312
● Walk through of using USB WiFi adapter with E3xx
● Discussion of embedded SDR workflow, embedded Linux environment (OE), and E310/E312 SDK
● Step-by-step walk through of cross compiling UHD for the E3xx
● Step-by-step walk through of cross compiling UHD C++ application for the E3xx
● Overview of useful E3xx linux commands
● Brief discussion on ARM NEON
● Implementing an FM transmitter in GRC for the E3xx
● Implementing an FM receiver on the E3xx and streaming processed data over ZMQ
● Background on FRS Radios
● Implementing an FRS transceiver in GRC
● Overview of Live SDR Environment
● Discussion on using the Live SDR Environment as a diagnostic and debugging tool
● Discussion of synchronizing multiple USRP devices for phase-synchronous and MIMO applications
● Discussion of the TwinRX daughterboard for MIMO applications
● Overview of the FPGA toolchain (Xilinx Vivado) and building FPGA images
● Overview of X300/X310 device recovery

Agenda (6)

6

● Introduction and overview of RFNoC
● Discussion of using the 10 Gb Ethernet interface
● Discussion of system performance tuning and optimization
● Detailed discussion of cellular applications:

○ (OpenBTS, srsLTE, OpenLTE, Eurecom OpenAirInterface, Amarisoft)
● Detailed discussion of GNSS applications (GNSS-SDR, Skydel Solutions, etc.)
● Overview and discussion on available learning resources
● Overview of Getting Help and Technical Support
● Upcoming Events

- A radio in which some or all of the physical-layer functions are implemented in
software running on a microprocessor, and/or on an FPGA

- Algorithms from DSP and communications theory running as real-time
software on a CPU and/or FPGA

- Software can be running on an embedded DSP chip (e.g., Analog Devices
TigerSHARC, Texas Instruments C6400) or a general-purpose CPU (e.g.,
Intel x86, ARM Cortex-M)

- Joe Mitola first coined the term in 1991

What is Software-Defined Radio (SDR)

7

- Most radios use the classic superheterodyne receiver architecture

- The RF signal from the antenna is mixed with a local oscillator to produce an intermediate
frequency (IF) signal

- The IF signal is a fixed lower-frequency signal which is then filtered and demodulated

SDR Architecture

8

- Most SDR uses a direct-conversion receiver (DCR) architecture

- Also called Zero-IF receiver, and homodyne receiver

- Eliminates the intermediate frequency (IF) by translating the band of interest directly to
baseband

- The frequency of the LO is set to the same frequency as the transmitted/desired RF signal

SDR Architecture

9

- Traditional radios are hard-wired to specific frequency bands and
communication protocols

- Fixed-function, Black Box

- Can’t be easily modified, can’t easily access internal values and states

- SDR provides:

- Flexibility

- Upgradability

- Reconfigurability

- Lower Cost

Why SDR?

10

- Voice-band Softmodems / WinModems in 1990s and 2000s

- Cellular handsets (baseband processors such as Qualcomm Snapdragon, MediaTek, etc.)

- Cellular basestations (OpenBTS, Osmocom, srsLTE, OpenLTE, Eurecom OAI, Amarisoft LTE)

- Cellular protocol stack emulation (GSM, WCDMA, LTE, 5G NR, UE/eNodeB)

- GPS Receivers and Simulators (GNSS-SDR, GPS-SDR-Sim, Skydel Solutions, Talen-X, Navigation Laboratories)

- Adaptive Radio and Cognitive Radio

- Satellite Communications (Ground Stations)

- Wireless Security Research

- Spectrum Monitoring

- Waveform Prototyping

- Wireless Systems Testing / Wireless Testbeds

- Public safety radio (Project 25)

Applications of SDR

11

- Radio Astronomy

- Drone Communications, Drone Detection, Drone Defense

- Direction Finding / Angle-of-Arrival

- Phased Arrays

- MIMO Systems

- Ad-hoc networks

- Processing can be either real-time or off-line / post-processing

- C++ and the USRP Hardware Driver (UHD) API (open-source)

- GNU Radio (Python, NumPy, SciPy, Matplotlib, etc.) (open-source)

- LabVIEWTM (National Instruments)

- MATLABTM (The MathWorks)

- Application-Specific:

- Cellular: OpenBTS, OpenBTS-UMTS, OpenLTE, srsLTE, Amarisoft

- GPS: GNSS-SDR, GPS-SDR-Sim, Skydel Solutions SDX

- Amateur Radio: HDSDR, SDR#, SDR-Console, WinRAD (using ExtIO)

Software Toolchains for SDR

12

- About Ettus Research

- Founded in 2004 by Matt Ettus

- Acquired by National Instruments in 2010

- Located in Santa Clara, California, USA; Austin, Texas, USA; Dresden, Germany

- USRP Product Families:

- B-series (B200, B210, B200mini): USB 3.0 host interface

- N-series (N200, N210, N300/N310, N320/N321): 1 Gb Ethernet host interface

- X-series (X300, X310): 1 and 10 Gb Ethernet host interface

- E-series (E310, E312, E313, E320): Embedded stand-alone SDR with ARM CPU

USRPTM

13

- USRP Daughterboards (for N-series and X-series only)

- BasicTX and BasicRX: no tuner, 1 MHz to 250 MHz

- LFTX and LFRX: no tuner, 0 Hz to 30 MHz

- WBX: 50 MHz to 2200 MHz, 40 or 120 MHz capture bandwidth, 1 Tx and 1 Rx

- SBX: 400 MHz to 4400 MHz, 40 or 120 MHz capture bandwidth, 1 Tx and 1 Rx

- CBX: 1200 MHz to 6000 MHz, 40 or 120 MHz capture bandwidth, 1 Tx and 1 Rx

- UBX: 10 MHz to 6000 MHz, 40 or 160 MHz capture bandwidth, 1 Tx and 1 Rx

- TwinRX: 10 MHz to 6000 MHz, 80 MHz capture bandwidth, Dual Rx Only, No Tx

USRPTM

14

USRP Architecture

15

USRP Architecture

16

USRP Architecture

17

USRP Architecture

18

USRP Model Comparison

19

USRP B200

20

- Xilinx Spartan 6 XC6SLX75 FPGA

- Analog Devices AD9364 RFIC direct-conversion transceiver

- Frequency range: 70 MHz - 6 GHz

- Up to 56 MHz of instantaneous bandwidth

- Full duplex, SISO (1 Tx & 1 Rx)

- Fast and convenient bus-powered USB 3.0 connectivity

- Optional Board Mounted GPSDO

USRP B210

21

- Xilinx Spartan 6 XC6SLX150 FPGA

- Analog Devices AD9361 RFIC direct-conversion transceiver

- Frequency range: 70 MHz - 6 GHz

- Up to 56 MHz of instantaneous bandwidth (61.44MS/s quadrature)

- Full duplex, MIMO (2 Tx & 2 Rx)

- Fast and convenient bus-powered USB 3.0 connectivity

- Optional Board Mounted GPSDO

USRP B200mini

22

- Xilinx Spartan-6 XC6SLX75 FPGA
- Analog Devices AD9364 RFIC direct-conversion transceiver
- Frequency range: 70 MHz to 6 GHz
- Up to 56 MHz of instantaneous bandwidth
- Full duplex, SISO (1 Tx & 1 Rx)
- Power from the USB 3.0 bus
- Low SWaP (size of a business card)

- Optional configuration: B200mini-i
- Industrial-grade XC6SLX75 FPGA

- Optional configuration: B205mini-i
- Industrial-grade XC6SLX150 FPGA

- Wide frequency range: 70 MHz to 6 GHz

- Based on Analog Devices AD9361 Transceiver

- Up to 56 MHz of instantaneous bandwidth

- 2x2 MIMO transceiver

- RX and TX filter banks

- Xilinx Zynq 7020 FPGA

- ARM Cortex A9 866 MHz dual-core CPU

- Up to 10 MS/s sample data transfer rate to ARM processor

- Synchronization with PPS time reference

- Integrated GPS receiver (not GPSDO)

- 9-axis inertial measurement unit

- Rich set of peripherals such as host USB and 1 Gigabit Ethernet

USRP E310/E312/E313

23

USRP E310/E312/E313

24

FRONT REAR

Front / Top Row:
• TRX-A – Channel A, Tx/Rx
• RX2-A – Channel A, Rx
• TRX-B – Channel B, Tx/Rx
• RX2-A – Channel B, Rx

Front / Bottom Row:
• Power Button
• microSD Card Slot
• GPS Antenna Port
• 1 PPS Sync

Rear:
• Power Button
• microSD Card Slot
• GPS Antenna Port
• 1 PPS Sync

USRP E310/E312/E313

25

- OpenEmbedded build framework

- Supports UHD and RFNoC

- GNU Radio support maintained by Ettus Research

- Optional Battery (E312)

- Optional IP67/PoE Configuration (E313)

USRP E310/E312/E313

26

USRP E310/E312/E313

27

USRP E310/E312/E313

28

USRP E310/E312/E313

29

USRP E320

30

● Based on Analog Devices AD9361 (70 MHz to 6 GHz frequency range, 56 MHz bandwidth)
● Xilinx Z7045 FPGA (3x to 4x larger than E310 FPGA)
● Single SFP+ Port for 10 Gbps Ethernet streaming
● Support for 12.5 Gbps Aurora streaming
● Enclosure also acts as a passive heatsink
● Fan header and attach points for Zynq (for convection-cooled apps)
● Single PCB to make OEM integration easier
● Temperature sensors on AD9361 and Xilinx Zynq FPGA
● Battery connector for optional external battery to enable portability
● Low SWaP, 3U Eurocard Size (160 x 100 mm)
● Jackson Labs LTE-Lite GPSDO
● MEMS Gyroscope

USRP E320 Photo

31

USRP E320 Photo

32

USRP N200 / N210

33

- Xilinx Spartan 3A-DSP XC3SD1800A (N200)

- Xilinx Spartan 3A-DSP XC3SD3400A (N210)

- 50 MHz (sc8) / 25 MHz (sc16) RF bandwidth

- Frequency range: DC - 6 GHz with suitable daughterboard

- Gigabit Ethernet connectivity

- Onboard FPGA processing

- Ability to lock to external 5 or 10 MHz clock reference

- TCXO Frequency Reference (~2.5ppm)

- Optional internal GPS locked reference oscillator

USRP X300 / X310

34

- Xilinx Kintex-7 XC7K325T FPGA (X300)

- Xilinx Kintex-7 XC7K410T FPGA (X310)

- Frequency range: DC to 6 GHz with daughterboard

- Up to 160 MHz bandwidth per channel

- Two wide-bandwidth RF daughterboard slots

- Optional internal GPSDO

- Multiple high-speed interfaces

- Single 1 Gbps Ethernet

- Single 10 Gbps Ethernet

- Dual 10 Gbps Ethernet

- PCIe Gen 2

USRP X300 / X310

35

FRONT

REAR

USRP X300 / X310

36

USRP X300 / X310

37

USRP N300 / N310

38

- Two Modes: Stand-Alone (embedded) and Host-Based (network streaming)

- Based on the Analog Devices AD9371

- Frequency Range 10 MHz to 6 GHz

- 100 MHz bandwidth per channel

- Channels: 4x4 (N310) or 2x2 (N300)

- 16-bit ADC and 14-bit DAC

- Master Clock Rates (MCR) of 122.88 MHz, 125 MHz, 153.6 MHz

- Xilinx Zynq 7100 (N310) or Zynq 7035 (N300) FPGA

- Dual 10 Gbps Ethernet port streaming support

- Rack-mountable, half wide, 1U

- Remote management support (remote firmware updates, remote OS updates, remote reboot,

remote factory reset, remote diagnostics and system health)

USRP N300 / N310 Photo

39

FRONT

REAR

USRP N300 / N310 Photo

40
TWO DAUGHTERBOARDS MOTHERBOARD

USRP N300 / N310

41

Daughterboard
connectors

2 SFP+ Ports (10 GbE)

RJ45 (Ethernet)
connector

Xilinx Zynq
(embedded ARM CPU + user-programmable FPGA)

RearFront

USB 2.0 Port

JTAG Port

2 GB ARM
DRAM (DDR3)

2 GB FPGA
DRAM (DDR3)

USRP N300 / N310

42

Daughterboard (2 per N310, 1 per N300)

Zynq 7020
(E310)

Zynq 7035
(N300)

Zynq 7045
(E320)

Zynq 7100
(N310)

Kintex 7 410T
(X310)

Logic Cells 85K 275K 350K 444K 406K

BRAM (MB) 4.9 17.6 19.1 26.5 28.6

DSP Slices 220 900 900 2020 1540

Flip-Flops 106K 343K 437K 554K 508K

LUTs 53K 171K 218K 277K 254K

GMACS 276 1334 1334 2622 2289

USRP FPGA Resources

43

USRP N320 / N321

44

- Two Modes: Stand-alone (embedded) or host-based (network streaming) operation

- Discrete RF front-end (not based on AD9371) and 2x2 Channels

- Expanded frequency range from 3 MHz to 6 GHz (covers the full HF band)

- Up to 200 MHz of instantaneous bandwidth per channel

- Improved LO sharing, making it easier to build large phase coherent MIMO systems

- N320 and N321 have ability to import Tx and Rx LOs

- N321 has ability to export Tx and Rx LOs, allowing it to act as a master LO source

- Xilinx Zynq 7100 SoC with dual-core ARM Cortex A9 866 MHz CPU

- Two SFP+ ports and one QSFP+ port for full-rate sample streaming

- RJ-45 port (1 Gbps Ethernet) for remote management capability

- Independent 10 MHz clock and 1 PPS time references

- Includes internal GPSDO and supports White Rabbit synchronization

- 200, 245.76, 250 MHz Master Clock Rates, 14-bit ADC, 16-bit DAC

USRP N320 Photo

45

USRP N321 Photo

46

USRP N320 and N321 Photos

47

USRP N320 Front Panel

48

USRP N320 Rear Panel

49

USRP N321 Front Panel

50

USRP N321 Rear Panel

51

USRP N320 LO Distribution Diagram

52

USRP N321 LO Distribution Diagram

53

OctoClock(-G) CDA-2990

54

- 8-Way Time and Frequency Distribution (1 PPS and 10 MHz)

- Convenient Solution for Multi-Channel Synchronization

- 19" Rackmount (1U)

- OctoClock distributes 10 MHz and 1 PPS signals from an external source

- External 10 MHz/1 PPS Source Required

- OctoClock-G generates and distributes 10 MHz and 1 PPS signals

- Contains internal GPSDO

OctoClock(-G) CDA-2990

55

White Rabbit

56

- White Rabbit was developed at CERN

- Ethernet-based network for accurate time transfer and time distribution

- Aimed at geographically-distributed systems and GPS-denied environments

- Based on IEEE 1588 / PTP and Synchronous Ethernet (SyncE)

- Provides sub-nanosecond skew, and sub-picosecond jitter

- Supports connections of up to 10 km

- Scalable beyond 1000 nodes

- Open-standard and open-source implementations available

- Supported only on the USRP N300, N310, N320, N321

- https://ohwr.org/projects/white-rabbit

LFRX / LFTX Daughterboard

57

- Frequency Range: DC - 30 MHz

- Real or Complex Sampling

BasicRX / BasicTX Daughterboard

58

- Frequency Range: 1 MHz - 250 MHz

- Real or Complex Sampling

- Direct ADC / DAC inputs

WBX Daughterboard

59

- Frequency Range: 50 MHz - 2.2 GHz

- Versions: 40 MHz / 120 MHz

- Full Duplex

- Phase sync with 180° ambiguity

SBX Daughterboard

60

- Frequency Range: 400 MHz - 4.4GHz

- Versions: 40 MHz / 120 MHz

- Full Duplex

- Phase synchronization

CBX Daughterboard

61

- Frequency Range: 1.2 GHz - 6 GHz

- Versions: 40 MHz / 120 MHz

- Full Duplex

UBX Daughterboard

62

- Frequency Range: 10 MHz - 6 GHz

- Versions: 40 MHz / 160 MHz

- RF shielding

- Full duplex operation

- Independent TX and RX frequencies

- Synthesizer synchronization for applications

requiring coherent or phase-aligned operation

supported on USRP X Series motherboards only

- Frequency range: 10 MHz - 6 GHz

- Bandwidth: 80 MHz per channel

- Channels: Two-stage superheterodyne

- 2 RX, Independent tuning

- LO sharing

- USRP compatibility: X Series

- RF shielding

- Coherent and phased aligned operation

- Spectrum Monitoring

- Direction Finding

TwinRX Daughterboard

63

TwinRX Daughterboard

64

TwinRX Daughterboard

65

TwinRX Daughterboard

66

- Integer decimation of the Master Clock Rate (MCR)

- Even decimation rate preferred

- Odd decimation rate allowed but with CIC filter roll-off attenuation

- For N200, N210:

- MCR is 100 MHz

- Decimation rates from 1 to 512

- Sample rates: 100, 50, 25, 16.67, 12.5, 10, 8.33 MHz, … 195.31 KHz

- For X300, X310:

- MCR is 200 MHz

- Decimation rates from 1 to 1024

- Sample rates: 200, 100, 50, 33.33, 25, 20, 16.67, 14.29, 12.5 MHz, … 195.31 KHz

- MCR 184.32 MHz also supported

Sampling Rates

67

- For N300, N310:

- MCR are 122.88, 125, 153.6 MHz

- Decimation rates from 1 to 1024

- For N320, N321:

- MCR are 200, 245.76, 250 MHz

- Decimation rates from 1 to 1024

- For B200, B210, B200mini, B205mini, E310, E312, E320:

- All based on AD9361

- MCR can be anything between 1 MHz and 61.44 MHz (30.76 MHz in 2x2)

- Decimation rates between 1 and 1024

Sampling Rates (continued)

68

- USB 2.0 uses 480 Mbits/sec (60 MB/sec) signalling rate

- ~35 MB/sec practical, or ~8 Msps

- USB 3.0 uses 5 Gbits/sec (625 MB/sec) signalling rate

- ~350 MB/sec practical, or ~80 Msps

- 1 GbE is 1000 Mbits/sec (125 MB/sec) theoretical

- ~25 Msps (sc16), ~50 Msps (sc8), practical

- 10 GbE is 10000 Mbits/sec (1250 MB/sec) theoretical

- ~250 Msps (sc16), ~500 Msps (sc8), practical

Host Interface Data Rates

69

- Used to lessen the data widths of samples over the host computer interface,

in order to enable higher sampling rates

- Trade-off is loss of resolution of the sample data

- One complex sample is nominally 16-bit I, 16-bit Q

- sc8 is 8-bit I, 8-bit Q

- sc12 is 12-bit I, 12-bit Q

- sc16 is 16-bit I, 16-bit Q

- Specify with the --wirefmt, --tx_otw, --rx_otw options

- Device maximum sampling rate may exceed maximum interface data rate

- Max sampling limited not by device but by interface

- Also limited by CPU and disk I/O

Over-the-wire (OTW) Formats

70

- The ER-USRP are not calibrated devices

- Any mapping between physical input/output power levels and USRP gain value, signal levels,

frequency setting must be measured empirically, and adjustments made in application software

- This mapping can change based on temperature, time, and sometimes gain setting

- This mapping can also vary unit-to-unit

- The NI-USRP have correction factors stored in the EEPROM

- Calculated at the factory at the time of manufacture

- Used by LabVIEW, and can be backed up

- Not used by UHD, but UHD has software calibration utilities for DC offset and I/Q balance

USRP Calibration

71

NI-USRP & ER-USRP Branding

72

● Identical Hardware

○ Almost: No GPSDO on NI USRP B200, B210

● ER USRP used with open-source (C++ and GNU Radio) and Matlab

● NI USRP used with LabView

● NI USRP can be converted to ER USRP, and vice-versa

○ Application Note on KB explains process step-by-step

● NI only provides LabVIEW support for NI branded USRP

● NI-294x and NI-295x (X310) USRPs contain factory-installed correction values within EEPROM

which will be lost if converting from NI-USRP to ER-USRP

NI-USRP & ER-USRP Product Mapping

73

Bus Series

NI-USRP ER-USRP

NI-2900 B200

NI-2901 B210

NI-USRP & ER-USRP Product Mapping

74

Network Series

NI-USRP ER-USRP

NI-2920 N210 + WBX

NI-2921 N210 + XCVR2450

NI-2922 N210 + SBX

NI-2930 N210 + WBX + GPSDO

NI-2932 N210 + SBX + GPSDO

NI-USRP & ER-USRP Product Mapping

75

X Series

NI-USRP ER-USRP

NI-2940R X310 + WBX (x2)

NI-2942R X310 + SBX (x2)

NI-2943R X310 + CBX (x2)

NI-2944R X310 + UBX (x2)

NI-2945R X310 + TwinRX (x2)

NI-USRP & ER-USRP Product Mapping

76

X Series

NI-USRP ER-USRP

NI-2950R X310 + WBX (x2) + GPSDO

NI-2952R X310 + SBX (x2) + GPSDO

NI-2953R X310 + CBX (x2) + GPSDO

NI-2954R X310 + UBX (x2) + GPSDO

NI-2955R X310 + TwinRX (x2) + GPSDO

- Provides a single, common interface to all USRP devices

- Host-side software driver running in user-space

- Open-source and hosted on GitHub

- Cross-platform (Windows, macOS, Linux)

- Four components: host-side software; FPGA; MPM; firmware

- https://github.com/EttusResearch

USRP Hardware Driver (UHD)

77

USRP Hardware Driver (UHD)

78

Application

LabVIEW C++ GNU Radio
Python / GRC / C++ Matlab

UHD Driver

Windows OSX Linux Embedded Linux

Hardware
Motherboard (FPGA)

Daughterboard
Antenna

UHD Licensing

79

● UHD and RFNoC are free software and open-source projects

○ UHD issued under GPLv3 license

○ RFNoC issued under LGPL license

○ All source code for host driver, MPM, FPGA, microcontroller firmware is available on GitHub

● Available:

○ Partial BoM (key components)

○ Schematics (PDF file)

○ 2D mechanical drawings (PDF file)

○ 3D CAD models (STP files)

○ Test validation data

● Not available:

○ Full BoM

○ Gerber files for PCBs

UHD Licensing (continued)

80

● ER also offers an alternative license for UHD and RFNoC

○ Enable non-FOSS designs and proprietary product distribution

○ Available only from Ettus Research

● Does not apply to GNU Radio

○ Only issued under GPLv3

○ Effort underway to issue GNU Radio under the LPGL

○ ER does not own the copyright

UHD Versioning

81

- Starting in UHD 3.10, the version numbering changed to quadruplets (major.API.ABI.patch)

- MAJOR version as necessitated by product generation & architecture

- API version, incremented when incompatible API changes are made

- ABI version, incremented when incompatible ABI changes are made

- PATCH version, incremented when backwards-compatible bug fixes are made

- When there is a significant change to the API, such as for adding N310 support, then the API is no

longer the same as it was in the previous version, necessitating that the API component of the version

number gets bumped up by one.

- The ABI pertains to how external applications communicate with (link to) the UHD library. When the

ABI changes, the number gets bumped by one.

- The patch number is incremented when patches are made, typically for bug fixes.

Radio Transport Protocols

82

Radio transport protocols are used to exchange samples (or other items) between host
and devices. If one were to sniff Ethernet traffic between a USRP and a PC, the packets
would conform to a radio transport protocol.

For USRP devices, two radio transport protocols are relevant: VRT (the VITA Radio
Transport protocol) and CHDR (compressed header, an Ettus-specific protocol).

Generation-3 devices and the B200 use CHDR, the rest use VRT.

VRT is an open protocol defined by the VITA-49 standard. It was designed for
interoperability, and to allow different device types to work with different software stacks.

VRT is a very verbose standard, and only a subset is implemented in UHD/USRPs. The
full standard is available from the VITA website: http://www.vita.com

Radio Transport Protocols

83

For the third generation of Ettus devices, a new type transport protocol was designed. It
reduces the complexity of the original standard and uses a fixed-length 64-Bit header for
everything except the timestamp. Because it is "compressed" into a 64-bit header, it was
dubbed CHDR (pronounced like the cheese "cheddar").

By compressing all information into a 64-bit line, the header can efficiently be parsed in
newer FPGAs, where the common streaming protocol is 64-Bit AXI. The first line in a
packet already provides all necessary information to proceed.

Some CHDR-specific functions can be found in: uhd::transport::vrt::chdr.

Typical CHDR Packet form:

If there is no timestamp present, the data starts at address 8, otherwise, it starts at 16.

Radio Transport Protocols

84

The 64 Bits in the compressed header have the following meaning:

Radio Transport Protocols

85

The packet type is determined mainly by the first two bits, although the EOB or error flag
are also taken into consideration:

Radio Transport Protocols

86

Tools
For CHDR, we provide a Wireshark dissector under tools/chdr_dissector. It can be
used for Ethernet links as well as USB (e.g., for the B210).

Code
Relevant code sections for the radio transport layer are:
uhd::transport::vrt

Namespace for radio transport protocol related functions and definitions:
uhd::transport::vrt::chdr

Sub-namespace specifically for CHDR:
uhd::sid_t

Datatype to represent SIDs

- Git is a free, cross-platform, open-source distributed source code management system

- GitHub is a web-based hosting service for Git repositories

- It’s not the only one, GitLab is also popular

- Both command-line-based and GUI-based clients for Windows, OS X, Linux

- Successor to CVS and Subversion (SVN), which are centralized systems

- Git was written by Linus Torvalds in 2005,
and is now very widely used in the open-source community

Git and GitHub

87

- Free books and resources:

- http://git-scm.com/

- https://progit.org/

- https://try.github.io/

- https://www.atlassian.com/git/tutorials

- http://rypress.com/tutorials/git/index

- https://www.git-tower.com/learn/git/ebook/en/command-line/introduction

- http://www-cs-students.stanford.edu/%7Eblynn/gitmagic/

Git and GitHub

88

Git and GitHub - Git-Fu

89

Install Git on your system, if it’s not already installed:

- sudo apt-get install git

Most common Git commands when working with UHD and GNU Radio:

- git clone <repository_url>

- git tag -l

- git checkout <tag|commit>

- git log

- git status

Git and GitHub - Git-Fu

90

View your Git username and email configuration:

$ git config user.name
$ git config user.email

Set your Git username and email configuration:

$ git config user.name “username”
$ git config user.email “email@domain.com”

Validate your SSH key against Github.com:

$ ssh -T git@github.com

Git and GitHub - Git-Fu

91

Clone using SSH instead of HTTPS:

$ git clone git@github.com:EttusResearch/uhd.git

Clone and checkout a branch in a single command:

$ git clone -b release_003_009_005 git@github.com:EttusResearch/uhd.git

View commit history of a repo (from within a repo):

$ git log

See current status of your commits on your working repo:

$ git status

Git and GitHub - Git-Fu

92

Create a local branch:

$ git checkout -b mynew/branch

Add files to be committed:

$ git add .

Commit files:

$ git commit -m “my commit message”

The UHD Repository on GitHub

93

host/
The source code for the host-side driver.

firmware/
The source code for all microcontrollers in USRP hardware.

fpga-src/
The source code for the UHD FPGA images. Note this is a git submodule, if you are cloning the repository and want to
modify the FPGA code, you will need to run 'git clone --recursive' to automatically populate this directory. Alternatively, you
can run 'git submodule init' followed by 'git submodule update' to populate it after cloning the repository without
'--recursive'. Note that this subdirectory is very large, and not necessary for building applications that link against UHD.

mpm/
The source code for the Module Peripheral Manager (MPM) for embedded USRP devices.

images/
This contains the package builder for FPGA and firmware images. We provide other tools to download image packages, the
scripts in here are mainly relevant for UHD maintainers and -developers.

tools/
Additional tools and utilities, mainly for debugging purposes.

Git and GitHub - Creating Pull Requests

94

- Internal development and Pull Requests are always submitted against the *dev repositories

- PRs must be reviewed and pass BuildBot before merge

- Only the tech leads may merge into their specific repositories.

Git and GitHub - Creating Pull Requests

95

Start by cloning your target repository to your local machine:

$ git clone git@github.com:EttusResearch/uhddev.git

$ cd uhddev

Configure your username / email if not set globally:

$ git config user.name “your_username”
$ git config user.email “your_email@domain.com”

Create a new working branch. Standard naming is to use your username/new_branch_name:

$ git checkout -b myusername/branchname

* Make your modifications to the files at this point *

Git and GitHub - Creating Pull Requests

96

After completing your modifications to the files, add them.

$ git add .

Next, commit the changes.

$ git commit -m “short message on changes made”

Next, push your changes to a remote branch:

$ git push -u origin myusername/branchname

Your local branch has now been pushed to the remote repository.

Git and GitHub - Creating Pull Requests

97

Next, you will need to login to Github.com to submit a Pull Request.

Within the Repository that you have pushed, a popup will appear to create a Pull Request based on
your recent push.

Click the “Compare & pull request” button.

Git and GitHub - Creating Pull Requests

98

You will then be taken to the “Open a Pull Request” submission form. Within the comment space of
the Pull Request form, provide any details of testing that you have performed, and if it is for “Review
Only” or is “Ready to merge”.

After submitting the Pull Request, a BuildBot check will be ran.

The PR will then be reviewed either by the Tech Lead, or by the Assignees. Upon successful view, the
PR will then be merged into the public repository.

In this workshop, we will always clone into the /home/demo/workarea folder.

Create a /home/demo/workarea folder:

$ mkdir -p /home/demo/workarea

Installing UHD, GNU Radio, etc

99

1. sudo apt-get install libboost-all-dev libusb-1.0-0-dev python-mako doxygen

python-docutils cmake build-essential libncurses5 libncurses5-dev

2. cd ~/workarea

3. git clone git://github.com/EttusResearch/uhd.git

4. cd uhd/

5. git checkout release_003_009_005

6. cd host/

7. mkdir build && cd build

8. cmake ../

9. make -j4

10. make test

11. sudo make install

12. sudo ldconfig

Installing UHD from Source Code

100Reference: ~/ettus_workshop/instructions/install.html

* Skip if using LiveSDR Environment

- From binary packages on Ubuntu Launchpad PPA

- Only for Ubuntu 14.04 LTS, 15.10, 16.04 LTS

- Only for UHD version 3.9.2 or newer

- See https://launchpad.net/~ettusresearch/+archive/ubuntu/uhd

Installing UHD from Binary Package

101

sudo apt-add-repository ppa:ettusresearch/uhd

sudo apt-get update

sudo apt-get install uhd-host libuhd003 libuhd-dev

- Add this line to your $HOME/.bashrc file, and source it, or logout and log back in:

export LD_LIBRARY_PATH=/usr/local/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

- On Linux, udev handles USB plug and unplug events. The following commands install a udev rule so that non-root

users may access the device. Without this, you will not see the radio as a normal user. This step is only necessary

for devices that use USB to connect to the host computer, such as the B200, B210, and B200mini.

cd <path-to-uhd-repository>/uhd/host/utils

sudo cp uhd-usrp.rules /etc/udev/rules.d/

sudo udevadm control --reload-rules

sudo udevadm trigger

- For USRP devices that use Ethernet to connect to the host computer, such as the N200, N210, X300, X310, set the

IP address of your system to 192.168.10.1, with a netmask of 255.255.255.0. The default IP address of the USRP is

192.168.10.2 (for 1 GbE), and 192.168.40.2 (for 10 GbE), with a netmask of 255.255.255.0.

- Use Network Manager GUI (in Unity, KDE, GNOME, Xfce, etc.) to set the IP address. If you set the IP address from

the command line with ifconfig, then Network Manager may probably overwrite this.

Post-Installation Steps

102

Thread priority scheduling

Add “usrp” group and add your user to “usrp”:

$ groupadd usrp

$ usermod -aG usrp $USER

Append the line below to the file: /etc/security/limits.conf

@usrp - rtprio 99

Logout and log back in.

Post-Installation Steps

103

UHD Utilities - uhd_images_downloader

104

sudo /usr/local/lib/uhd/utils/uhd_images_downloader.py

UHD Utilities - uhd_images_downloader

105

UHD Utilities - uhd_find_devices

106

Uses broadcast packets for discovery.
Often blocked by routers, switches, firewalls.

View firewall settings with:
sudo iptables -L

UHD Utilities - uhd_usrp_probe

107

108

--args , most UHD applications and examples make use of this parameter to focus on, or find specific
devices.

Common argument keys: serial, addr, resource, name, type, vid/pid.

$ uhd_find_devices --args “addr=192.168.10.2” (for N2xx / X3xx)

$ uhd_find_devices --args “type=b200,serial=xxxxxxx” (for B2xx)

(Note multiple arguments are comma-delimited)

This will return the devices at the specific IP
address, and can be used to overcome previously
mentioned network obstacles.

UHD Arguments

UHD Example Programs

109

rx_ascii_art_dft --args “addr=192.168.10.2” --freq 98e6 --rate 1e6 --gain 20 --ref-lvl -50

Verifying USRP using UHD

110

benchmark_rate --rx_rate 10e6 --tx_rate 10e6

Verifying USRP using UHD

111

rx_samples_to_file --args=”addr=192.168.10.2” --freq 98e6 --gain 20 --rate 1e6 usrp_samples.dat

Verifying USRP using UHD

112

tx_samples_from_file --args=”addr=192.168.10.2” --freq 915e6 --rate 1e6 --gain 0 usrp_samples.dat

- Default installation location is /usr/local/lib/uhd/utils

- uhd_images_downloader

- Downloads FPGA images for the current UHD version

- uhd_image_loader

- Writes an FPGA image into the flash memory for the X300/X310 FPGA

- usrp_burn_mb_eeprom

- Reading and writing motherboard EEPROM

- usrp_burn_db_eeprom

- Reading and writing daughterboard EEPROM

UHD Utilities

113

UHD Example Programs

114

- rx_ascii_art_dft
- Creates ASCII/Ncurses FFT
- ./rx_ascii_art_dft --freq 98e6 --rate 5e6 --gain 20 --bw 5e6 --ref-lvl -50

- rx_samples_to_file
- Saves samples to file
- ./rx_samples_to_file --freq 98e6 --rate 5e6 --gain 20 usrp_samples.dat

- tx_samples_from_file
- Transmits samples from file
- ./tx_samples_from_file --freq 915e6 --rate 5e6 --gain 10 usrp_samples.dat

- benchmark_rate
- Benchmarks interface with device
- ./benchmark_rate --rx_rate 10e6 --tx_rate 10e6

- tx_waveforms
- Transmits specific waveform
- ./tx_waveforms --freq 915e6 --rate 5e6 --gain 0

- Default installation location is /usr/local/lib/uhd/examples

UHD Managing Multiple Installations

115

It is possible to have multiple concurrent UHD / GR installations. This can be useful to
quickly switch between versions and/or test different versions of UHD/GR.

Example: Create local (non-default) installation of UHD 3.9.6

First, create a directory for the installation location, and sources:

mkdir -p ~/installs/uhd_396/src
cd ~/installs/uhd_396/src

UHD Managing Multiple Installations

116

Next, clone UHD into the src directory and checkout the 3.9.6 release:

git clone git://github.com/EttusResearch/uhd.git
cd uhd
git checkout release_003_009_006
cd host
mkdir build

Next, we will pass the flag CMAKE_INSTALL_PREFIX to the cmake command. This
will define which prefix UHD will be installed at.

cmake -DCMAKE_INSTALL_PREFIX=/home/demo/installs/uhd_396 ../

Next, we will compile and install UHD. Note, when performing a “local” installation, the
“make install” command does not require “sudo”, because it is being installed
to your local/home directory, and not the default /usr/local.

make -j4
make install

UHD Managing Multiple Installations

117

Next, we need to create an Environment Setup File. We will call this file “setup_env.sh”.

There are several important Linux Systems Variables that need to be configured to switch between
UHD installations: PATH, LD_LIBRARY_PATH, PYTHONPATH, PKG_CONFIG_PATH

cd ~/installs/uhd_396
touch setup_env.sh
nano setup_env.sh

Add the following lines to setup_env.sh:

export BASE_PATH=/home/demo/installs/uhd_396
export PATH=$BASE_PATH/bin:$PATH

export LD_LIBRARY_PATH=$BASE_PATH/lib:$LD_LIBRARY_PATH
export PYTHONPATH=$BASE_PATH/lib/python2.7/site-packages:$PYTHONPATH
export PYTHONPATH=$BASE_PATH/lib/python2.7/dist-packages:$PYTHONPATH
export PKG_CONFIG_PATH=$BASE_PATH/lib/pkgconfig:$PKG_CONFIG_PATH

UHD Managing Multiple Installations

118

If you’re operating on a Fedora/CentOS/RHEL based OS which has a Library Suffix “64”, you will
need to modify the previously path commands to the paths below:

export LD_LIBRARY_PATH=$BASE_PATH/lib64:$LD_LIBRARY_PATH
export PYTHONPATH=$BASE_PATH/lib64/python2.7/site-packages:$PYTHONPATH
export PYTHONPATH=$BASE_PATH/lib64/python2.7/dist-packages:$PYTHONPATH
export PKG_CONFIG_PATH=$BASE_PATH/lib64/pkgconfig:$PKG_CONFIG_PATH

Note the addition of “lib64”.

UHD Managing Multiple Installations

119

Before sourcing the “setup_env.sh” file, let's first check what UHD version is currently being
called by the system. We will test this with two commands:

$ uhd_usrp_probe --version
linux; GNU C++ version 4.8.4; Boost_105400; UHD_003.009.005-0-g32951af2

003.009.005-0-g32951af2

$ which uhd_usrp_probe
/usr/local/bin/uhd_usrp_probe

UHD Managing Multiple Installations

120

Finally, we will now need to “source” the “setup_env.sh” file, which will execute and load the
functions / variables into the current shell session.

$ source ~/installs/uhd_396/setup_env.sh

Now, verify that the local version of UHD is being referenced:

$ uhd_usrp_probe --version
linux; GNU C++ version 4.8.4; Boost_105400; UHD_003.009.006-0-g122d5f8e

003.009.006-0-g122d5f8e

$ which uhd_usrp_probe
/home/demo/installs/uhd_396/bin/uhd_usrp_probe

Note: The System Variables / Paths set by the “setup_env.sh” script will only be loaded into the
current shell. If you close the terminal, or open a new terminal, you would need to rerun the
“source setup_env.sh” command in order to use the locally installed version.

UHD Managing Multiple Installations

121

Next, run the “uhd_images_downloader” utility. This will download and install the FPGA image package
to the local (~/installs/uhd_396/...) path.

$ uhd_images_downloader

Images destination: /home/demo/installs/uhd_396/share/uhd/images
Downloading images from:
http://files.ettus.com/binaries/images/uhd-images_003.009.006-release.zip
Downloading images to: /tmp/tmpOny8tE/uhd-images_003.009.006-release.zip
26269 kB / 26269 kB (100%)

Images successfully installed to: /home/demo/installs/uhd_396/share/uhd/images

You can now initialize the USRP with this local version of UHD by running:

$ uhd_usrp_probe

- Packet flow errors printed in console/terminal as upper-case letters:

- Underrun on Tx (“U”):

- Samples not being produced by the host application fast enough. CPU governor or other power management not configured correctly.

- Overrun on Rx (“O”):

- Samples not being consumed by the host application fast enough. CPU governor or other power management not configured correctly.

- Sequence Error on Tx (“S”):

- Network hardware failure. Check host NIC, cable, switch, etc. Frame size might not work with the current NIC's MTU.

- Dropped Packet on Rx (“D”):

- Network hardware failure. Check host NIC, cable, switch, etc. PCIe bus on host cannot sustain throughput. CPU governor or other

power management not configured correctly. Frame size might not work with the current NIC's MTU. Check "ethtool -S

<interface>".

- Late Packet on Tx (“L”):

- Samples are not being produced by user's application fast enough. CPU governor or other power management not configured correctly.

Incorrect/invalid time_spec provided. Usually on MIMO.

- http://files.ettus.com/manual/page_usrp_x3x0_config.html

Packet Flow Errors

122

Using UHD from C++

123

#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/exception.hpp>
#include <uhd/types/tune_request.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/thread.hpp>
#include <iostream>

int UHD_SAFE_MAIN(int argc, char *argv[]) {

...

 return EXIT_SUCCESS;
}

Reference: ~/ettus_workshop/examples/usrp_basic/usrp_basic.cpp

Using UHD from C++

124

int UHD_SAFE_MAIN(int argc, char *argv[]) {
 uhd::set_thread_priority_safe();

 std::string device_args("type=b200");
 std::string subdev("A:0");
 std::string ant("TX/RX");
 std::string ref("internal");

 double rate(1e6);
 double freq(915e6);
 double gain(10);

 //create a usrp device
 std::cout << std::endl;
 std::cout << boost::format("Creating the usrp device with: %s...") % device_args << std::endl;
 uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(device_args);

 // Lock mboard clocks
 std::cout << boost::format("Lock mboard clocks: %f") % ref << std::endl;
 usrp->set_clock_source(ref);

Using UHD from C++

125

 //always select the subdevice first, the channel mapping affects the other settings
 std::cout << boost::format("subdev set to: %f") % subdev << std::endl;
 usrp->set_rx_subdev_spec(subdev);
 std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;

 //set the sample rate
 if (rate <= 0.0) {
 std::cerr << "Please specify a valid sample rate" << std::endl;
 return ~0;
 }

 // set sample rate
 std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6) << std::endl;
 usrp->set_rx_rate(rate);
 std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate() / 1e6) << std::endl << std::endl;

 // set freq
 std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq / 1e6) << std::endl;
 uhd::tune_request_t tune_request(freq);
 usrp->set_rx_freq(tune_request);
 std::cout << boost::format("Actual RX Freq: %f MHz...") % (usrp->get_rx_freq() / 1e6) << std::endl << std::endl;

Using UHD from C++

126

 // set the rf gain
 std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl;
 usrp->set_rx_gain(gain);
 std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain() << std::endl << std::endl;

 // set the antenna
 std::cout << boost::format("Setting RX Antenna: %s") % ant << std::endl;
 usrp->set_rx_antenna(ant);
 std::cout << boost::format("Actual RX Antenna: %s") % usrp->get_rx_antenna() << std::endl << std::endl;

 return EXIT_SUCCESS;
}

- Use the uhd/host/examples/init_usrp/CMakeLists.txt file as template

- Add the names of your C++ source files to the add_executable(…) section

- Put both modified CMakeLists.txt file and C++ file into an empty folder

- Create a “build” folder and invoke CMake the usual way:

mkdir build

cd build

cmake ../

make -j4

Building UHD C++ Program

127

- init_usrp example included as ~/ettus_workshop/examples/usrp_basic

$ cd ~/ettus_workshop/examples/usrp_basic

$ mkdir build

$ cd build

$ cmake ..

$ make

$./usrp_basic

$ ldd ./usrp_basic

Building UHD C++ Program

128

Building UHD C++ Program

129

- sudo apt-get install wireshark

- In a terminal window, run as root: sudo wireshark

- Select appropriate network interface from list (usually eth0), and click Start icon

- uhd_find_devices uses broadcast packets to find all USRP devices on network

- Be careful, host firewall (iptables), switch, or router may block broadcast packets

- View status of your host firewall settings by running: sudo iptables -L

- X300 / X310 will emit gratuitous ARP packets showing IP address every 6 seconds

- N200 / N210 does not do this

Debugging USRP with Wireshark

130

Debugging USRP with Wireshark

131

Debugging USRP with Wireshark

132

Installing the UHD / CHDR Dissector
Plugin source is located with UHD repository at: uhd/tools/dissectors

To install, the Wireshark Development files are required:

sudo apt-get install wireshark-dev

Next navigate to the dissectors directory:

cd ~/workarea/uhd/tools/dissectors
mkdir build
cd build
cmake ..
make
sudo make install

* Dissectors are also available for ZPU and OctoClock
Enable by passing “zpu” or “octoclock” option during cmake configuration step:

cmake -DETTUS_DISSECTOR_NAME=zpu ../

Debugging USRP with Wireshark

133

To sniff the USB bus, you must first enable the USBMON kernel module:

sudo modprobe usbmon

To give regular users privileges, make the usbmonX device(s) readable:

sudo setfacl -m u:$USER:r /dev/usbmon*

Next, run wireshark:

wireshark

Debugging USRP with Wireshark

134

Upon startup, select all (highlight one and press CTRL+A) of the usbmonX interfaces and click Start

Debugging USRP with Wireshark

135

Debugging USRP with Wireshark

136

Debugging USRP with Wireshark

137

Debugging USRP with Wireshark

138

Debugging USRP with Wireshark

139

Debugging USRP with Wireshark

140

- Motherboard EEPROM

- Contains name, serial number, hardware revision number, compat number, product ID, MAC

address, IP address, netmask

- Daughterboard EEPROM

- Product name and ID (hex code), hardware revision number, serial number

- Two utilities for reading and writing EEPROMs

- /usr/local/lib/uhd/utils/usrp_burn_db_eeprom

- Specify slot and Tx/Rx

- /usr/local/lib/uhd/utils/usrp_burn_mb_eeprom

- Use the --read-all argument

Device EEPROM

141

MB EEPROM Output

142

DB EEPROM Output

143

- Open-source framework for SDR and signal processing

- Founded by Eric Blossom in 2001

- Project leader Ben Hilburn (formerly Tom Rondeau)

- Block-based dataflow architecture

- Each block runs in its own thread

- Data flows through a graph called a Flowgraph

- Blocks are nodes in a Flowgraph, and perform operations and signal processing

- Signals normalized between -1.0 and +1.0

- Similar in concept to MathWorks SimulinkTM

- Running C++ and Python under-the-hood

- Can write code directly, or use the GNU Radio Companion (GRC) graphical tool

- Hosted on GitHub at https://github.com/gnuradio/gnuradio

- Homepage is http://gnuradio.org/

GNU Radio

144

sudo apt-get -y install git swig cmake doxygen build-essential libboost-all-dev libtool libusb-1.0-0
libusb-1.0-0-dev libudev-dev libncurses5-dev libfftw3-bin libfftw3-dev libfftw3-doc libcppunit-1.13-0v5
libcppunit-dev libcppunit-doc ncurses-bin cpufrequtils python-numpy python-numpy-doc python-numpy-dbg
python-scipy python-docutils qt4-bin-dbg qt4-default qt4-doc libqt4-dev libqt4-dev-bin python-qt4
python-qt4-dbg python-qt4-dev python-qt4-doc python-qt4-doc libqwt6abi1 libfftw3-bin libfftw3-dev
libfftw3-doc ncurses-bin libncurses5 libncurses5-dev libncurses5-dbg libfontconfig1-dev libxrender-dev
libpulse-dev swig g++ automake autoconf libtool python-dev libfftw3-dev libcppunit-dev libboost-all-dev
libusb-dev libusb-1.0-0-dev fort77 libsdl1.2-dev python-wxgtk3.0 git-core libqt4-dev python-numpy ccache
python-opengl libgsl-dev python-cheetah python-mako python-lxml doxygen qt4-default qt4-dev-tools
libusb-1.0-0-dev libqwt5-qt4-dev libqwtplot3d-qt4-dev pyqt4-dev-tools python-qwt5-qt4 cmake git-core wget
libxi-dev gtk2-engines-pixbuf r-base-dev python-tk liborc-0.4-0 liborc-0.4-dev libasound2-dev python-gtk2
libzmq-dev libzmq1 python-requests python-sphinx libcomedi-dev python-zmq tree

GNU Radio Installation - Source Install

145

Ubuntu 18.04 Dependencies

Reference: ~/ettus_workshop/instructions/install.html

1. cd ~/workarea

2. git clone --recursive https://github.com/gnuradio/gnuradio.git

3. cd gnuradio/

4. git checkout v3.7.10.1

5. mkdir build && cd build

6. cmake ../

7. make -j4

8. sudo make install

9. sudo ldconfig

GNU Radio Installation - Source Install

146

Building GNU Radio

Reference: ~/ettus_workshop/instructions/install.html

- PyBOMBS
- Python Build Overlay Managed Bundle System

- Package management tool for GNU Radio, similar to RPM, yum, apt-get, and pip

- New version 2 just released

- http://www.pybombs.info

- The build-gnuradio script

- From Marcus Leech at CCERA (formerly SBRAC)

- wget http://www.sbrac.org/files/build-gnuradio && chmod a+x ./build-gnuradio &&

./build-gnuradio

- Launchpad PPA / Binary Packages

- Often old versions are packages

- Avoid installing from binary package

- Ubuntu 14.04 packages GR 3.7.2.1

- Ubuntu 15.10 packages GR 3.7.8

GNU Radio Installation - Other Methods

147

- Detailed step-by-step instructions for the following operating systems:
- Ubuntu 18.04, 18.10, 19.04
- Fedora 27, 28, 29
- Windows 7, 8, 10
- OS X

- Located in Ettus Research Knowledge Base
- kb.ettus.com

- https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux

- https://kb.ettus.com/Building_and_Installing_the_USRP_Open_Source_Toolchain_(UHD_and_GNU_Radio)_on_Windows

- https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_OS_X

UHD / GNU Radio Installation App Notes

148

https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://kb.ettus.com/Building_and_Installing_the_USRP_Open_Source_Toolchain_(UHD_and_GNU_Radio)_on_Windows
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_OS_X

- Always install UHD first, before installing GNU Radio

- Otherwise, GNU Radio will not know to enable the gr-uhd component at build-time

- Without gr-uhd, GNU Radio does not know how to use USRP devices

- Whenever UHD changes (upgrade or downgrade), you may need to re-build and re-install gr-uhd

- Symptom: GR runs fine, but then suddenly crashes when you run with a USRP

- This occurs because the UHD ABI, and sometimes API, can change from release to release

- gr-uhd needs to be updated to accommodate such changes

- The re-build and re-install of gr-uhd is quick

- If GR changes (upgrade or downgrade), you do not need to go back and re-build UHD

GNU Radio Installation - Footnotes

149

- Instead of switching versions, install multiple versions of UHD and GR in parallel

- Often done for testing, application development, debugging, running older legacy applications

- Tell CMake where to put the installation

- Invoke CMake with:

-DCMAKE_INSTALL_PREFIX=<install-path>

- The default location is /usr/local

- Commonly put parallel versions in /opt/uhd-x.y.z and /opt/gnuradio-x.y.z

- Switch between versions by setting environment variables appropriately:

- $PATH

- $LD_LIBRARY_PATH

- $PYTHONPATH

- $PKG_CONFIG_PATH

Parallel UHD and GR Installations

150

- Sometimes it is necessary to downgrade or upgrade UHD and/or GR

- Often done for testing, application development, debugging, running older legacy applications

- To switch versions:

- go to the “build” folder in the repository

- checkout a specific tagged release from Git

- re-build

- re-install

cd /home/user/uhd/host/build

git checkout release_003_008_004

make -j4

sudo make install

- Verify version switch by running uhd_find_devices and looking at the first line of output

Switching Versions of UHD and GR

151

GR Managing Multiple Installations

152

This slide continues upon the previously made parallel UHD installation.
This installation will reference the locally installed UHD, and install GNU Radio locally.

cd ~/installs/uhd_396/src
git clone --recursive -b v3.7.10.1 https://github.com/gnuradio/gnuradio.git
mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=/home/demo/installs/uhd_396/
-DUHD_DIR=/home/demo/installs/uhd_396/lib/cmake/uhd/
-DUHD_INCLUDE_DIRS=/home/demo/installs/uhd_396/include/
-DUHD_LIBRARIES=/home/demo/installs/uhd_396/lib/libuhd.so ../

make -j4
make install

Use this locally built version of GNU Radio by running “source setup_env.sh” against the previously
created “setup_env.sh” script created under the “UHD Managing Multiple Installations” section.

- To remove an installation of UHD or GNU Radio:

- Go into the “build” folder of the repository

- Tell Make to do an uninstall

- Optionally, remove the Git repository, if no longer needed

cd /home/user/uhd/host/build

make uninstall

rm -rf /home/user/uhd

- Note that this procedure does not remove any GNU Radio OOT modules

- Need to be removed separately and individually

- Remove all OOT modules first, before removing GNU Radio itself

Removing a UHD or GR Installation

153

- Configuration utility:
- gnuradio-config-info --version (or -v)

- gnuradio-config-info --prefix

- gnuradio-config-info --enabled-components

- In Python interpreter, run:
import gnuradio

Testing the GNU Radio Installation

154

- Many examples included with GNU Radio installation

- Located at:

<install_path>/share/gnuradio/examples/

/usr/local/share/gnuradio/examples/

GNU Radio Examples

155

In-band telecommunication signaling system using the voice-frequency band over
telephone lines between telephone equipment and other communications devices

Dual-tone multi-frequency signaling (DTMF)

156

The DTMF telephone keypad is
laid out in a 4×4 matrix of push
buttons in which each row
represents the low frequency
component and each column
represents the high frequency
component of the DTMF signal.

- Dial Tone Example
- Generates a PSTN dial tone

- Does not use any hardware

- Verifies that all libraries can be found, and the GR run-time is working

- Run the following example:

- Flowgraph located at:

GNU Radio Dial Tone Example

157

$ python ~/ettus_workshop/flowgraphs/dial_tone_basic.py

~/ettus_workshop/flowgraphs/dial_tone_basic.grc

Dial Tone Example: Python Code

158

from gnuradio import analog
from gnuradio import audio
from gnuradio import blocks
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes
from optparse import OptionParser

class dial_tone_basic(gr.top_block):

 def __init__(self):
 gr.top_block.__init__(self, "Dial Tone Basic")

 ##
 # Variables
 ##
 self.samp_rate = samp_rate = 32000

Location: ~/ettus_workshop/flowgraphs/dial_tone_basic.py

Dial Tone Example: Python Code

159

 ##
 # Blocks
 ##
 self.blocks_add_xx = blocks.add_vff(1)
 self.audio_sink = audio.sink(32000, '', True)
 self.analog_sig_source_x_1 = analog.sig_source_f(samp_rate, analog.GR_COS_WAVE, 440, .4, 0)
 self.analog_sig_source_x_0 = analog.sig_source_f(samp_rate, analog.GR_COS_WAVE, 350, .4, 0)
 self.analog_noise_source_x_0 = analog.noise_source_f(analog.GR_GAUSSIAN, .005, -42)

 ##
 # Connections
 ##
 self.connect((self.analog_noise_source_x_0, 0), (self.blocks_add_xx, 2))
 self.connect((self.analog_sig_source_x_0, 0), (self.blocks_add_xx, 0))
 self.connect((self.analog_sig_source_x_1, 0), (self.blocks_add_xx, 1))
 self.connect((self.blocks_add_xx, 0), (self.audio_sink, 0))

Dial Tone Example: Python Code

160

 def get_samp_rate(self):
 return self.samp_rate

 def set_samp_rate(self, samp_rate):
 self.samp_rate = samp_rate
 self.analog_sig_source_x_1.set_sampling_freq(self.samp_rate)
 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)

def main(top_block_cls=dial_tone_basic, options=None):

 tb = top_block_cls()
 tb.start()
 try:
 raw_input('Press Enter to quit: ')
 except EOFError:
 pass
 tb.stop()
 tb.wait()

if __name__ == '__main__':
 main()

Dial Tone Example: Flowgraph

161

Location: ~/ettus_workshop/flowgraphs/dial_tone_basic.grc

Example: Dial Tone with Slider Widgets

162

Location: ~/ettus_workshop/flowgraphs/dial_tone_sliders.grc

Verifying USRP using GNU Radio

163

uhd_fft --args “addr=192.168.10.2” --freq 100e6 -s 10e6 -g 20

Verifying USRP using GNU Radio

164

uhd_siggen --args “addr=192.168.10.2” --freq 915e6 -g 0

Verifying USRP using GNU Radio

165

uhd_siggen_gui --args “addr=192.168.10.2” --freq 3025e6 -g 0

At a command prompt, type: gnuradio-companion

Using gnuradio-companion

166

workspace
canvas

toolbar

library

terminal

Using gnuradio-companion - Search

167

Using gnuradio-companion - Search

168

Blocks have ports which input and output specific data types.

The color of the port indicates its data type.

Using gnuradio-companion

169

Help -> Types

Hot keys:

- Up/Down arrows change data type
- E/D keys enable/disable blocks

Using gnuradio-companion

170

Every block has properties that can be viewed and set

Using gnuradio-companion

171

Options Block

172

Options Block

173

- ID: File name of generated Python code

- TITLE: Title of flowgraph

- AUTHOR: Author of flowgraph

- DESCRIPTION: Description of flowgraph

- CANVAS SIZE: Size of working area for flowgraph

- GENERATE OPTIONS: QT GUI, WX GUI, No GUI, HIER BLOCK, HIER BLOCK (QT GUI)

- RUN: Autostart / OFF

- MAX NUMBER OF OUTPUTS: Limits max number of outputs of any block

- REALTIME SCHEDULING: Use real-time CPU scheduling to run flowgraph

- QSS THEME: Theme of flowgraph <install_path>/share/gnuradio/themes/

Throttle Block

174

- Distinct from a mathematical (DSP) calculation context, sample rate also refers to the rate at
which samples pass through the flowgraph

- If there is no rate control, hardware clock, or throttling mechanism, then the samples will be
generated, pass through the flowgraph, and be consumed as fast as possible (i.e., the
flowgraph will be only CPU-bound)

- This is desirable if you want to perform some specific DSP on data as quickly as possible (e.g.,
read from a file, re-sample, and write it back to disk)

- Only a block that represents some underlying hardware with its own clock (e.g. USRP, sound
card), or the Throttle Block itself, will use 'Sample Rate' to set that hardware clock, and
therefore have the effect of applying rate control to the samples in the flowgraph

- Not having a Throttle Block in a flowgraph where it’s needed may result in the flowgraph
consuming 100% of your CPU, and your system becoming unresponsive

Throttle Block (cont’d)

175

- A Throttle Block will simply apply host-based timing (against the 'wall clock') to control the rate
of the samples it produces (i.e. samples that it makes available on its outputs to
downstream blocks)

- A hardware Sink block will consume samples at a fixed rate (relative to the wall clock)

- The Throttle Block, or a hardware Sink block, will apply 'back pressure' to the upstream blocks
(the rate of work of the upstream blocks will be limited by the throttling effect of this
rate-controlling block)

- A hardware Source block will produce samples at a fixed rate (relative to the wall clock)

- In general, there should only ever be one block in a flowgraph that has the ability to throttle
sample flow

Fundamentals

Components of GNU Radio

176

- gr-analog

- Blocks for analog communications

- gr-block

- Basic block library

- gr-digital

- Blocks for digital communications

- gr-fec

- Forward Error Correction signal processing blocks

- GNU Radio is comprised of components

- Components consist of blocks as well as other functionality

- The top-level components included in the GNU Radio distribution are:

- gr-fft

- FFT signal processing blocks

- gr-filter

- Filter signal processing blocks

- gr-runtime

- GNU Radio core runtime infrastructure

- gr-trellis

- Trellis-based algorithms for GNU Radio

- gr-vocoder

- Blocks implementing voice codecs

- gr-wavelet

- Wavelet signal processing blocks for GNU Radio

Components of GNU Radio

177

Graphical Interfaces

Components of GNU Radio

178

- gr-qtgui

- QT GUI Interface

- QT is becoming the primary GUI toolkit for GNU Radio going forward

- QT 4 currently, QT 5 coming soon

- gr-wxgui

- WX GUI Interface

- wxWidgets is being deprecated in GNU Radio

Hardware Interfaces

Components of GNU Radio

179

- gr-audio

- Block for all supported audio sound systems

- gr-comedi

- Blocks for the comedi library

- gr-fcd

- Funcube Dongle source block for GNU Radio

- gr-shd

- Blocks for the Simplex Hardware Driver (SHD)

- gr-uhd

- Blocks to interface with USRP / UHD

- gr-osmocom

- Universal Block to interface with various SDR Hardware

Example: Signal Source

180

Location: ~/ettus_workshop/flowgraphs/signal_source.grc

Example: Signal Source Running

181

Using GNU Radio from Python

182

Generate Python from GRC Flow graph

>>> import gnuradio
>>> ...

Invoke directly from the Linux command line:
$ python example_3.py

Using GNU Radio from Python

183

Example: Basic Signal Transmission

184

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.grc

Example: Basic Signal Transmission

185

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

#!/usr/bin/env python2
-*- coding: utf-8 -*-
##
GNU Radio Python Flow Graph
Title: Basic Signal Tx
Generated: Mon Apr 10 21:33:56 2017
##

from gnuradio import analog
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio import uhd
from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes
from optparse import OptionParser
import time

Setting Python Environment
Basic Informational Header

Required GNU Radio / Python Imports

Example: Basic Signal Transmission

186

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

class basic_signal_tx(gr.top_block):

 def __init__(self):
 gr.top_block.__init__(self, "Basic Signal Tx")

Top Level Class
- Class name is set by “ID” in “Options” Block

Example: Basic Signal Transmission

187

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 ##
 # Variables
 ##
 self.samp_rate = samp_rate = 1e6
 self.gain = gain = 10
 self.freq = freq = 1e9
 self.antenna = antenna = "TX/RX"

All Variables are contained within Parent Class

Example: Basic Signal Transmission

188

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 ##
 # Blocks
 ##
 self.uhd_usrp_sink_0 = uhd.usrp_sink(
 ",".join(("", "")),
 uhd.stream_args(
 cpu_format="fc32",
 channels=range(1),
),
)
 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)
 self.uhd_usrp_sink_0.set_center_freq(freq, 0)
 self.uhd_usrp_sink_0.set_gain(gain, 0)
 self.uhd_usrp_sink_0.set_antenna(antenna, 0)
 self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, 1000, 1, 0)

Creation of UHD Sink Block

Calls to apply Sample Rate, Center Frequency,
Gain, Antenna Selection

Creation of Signal Source Block

Example: Basic Signal Transmission

189

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 ##
 # Connections
 ##
 self.connect((self.analog_sig_source_x_0, 0), (self.uhd_usrp_sink_0, 0))

Creating the connection between Signal Source and UHD Sink Block

Example: Basic Signal Transmission

190

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 def get_samp_rate(self):
 return self.samp_rate

 def set_samp_rate(self, samp_rate):
 self.samp_rate = samp_rate
 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)
 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)

 def get_gain(self):
 return self.gain

 def set_gain(self, gain):
 self.gain = gain
 self.uhd_usrp_sink_0.set_gain(self.gain, 0)

All Variables have getters/setters

Setters will recall UHD method to apply any updated value

Example: Basic Signal Transmission

191

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 def get_freq(self):
 return self.freq

 def set_freq(self, freq):
 self.freq = freq
 self.uhd_usrp_sink_0.set_center_freq(self.freq, 0)

 def get_antenna(self):
 return self.antenna

 def set_antenna(self, antenna):
 self.antenna = antenna
 self.uhd_usrp_sink_0.set_antenna(self.antenna, 0)

Example: Basic Signal Transmission

192

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

def main(top_block_cls=basic_signal_tx, options=None):

 tb = top_block_cls()
 tb.start()
 try:
 raw_input('Press Enter to quit: ')
 except EOFError:
 pass
 tb.stop()
 tb.wait()

if __name__ == '__main__':
 main()

Passing of created class to main()

Initialization of “Top Block”

Starting of “Top Block / Sample Streaming”

Try/Run until raw input is entered

Stopping of Flowgraph / Top Block

Waits until the .stop() call has propagated
through all blocks before returning

Execution of main() function to Python Interpreter

Example: Basic Signal Transmission

193

Additional details of Operating a Flowgraph:

http://gnuradio.org/doc/doxygen/page_operating_fg.html

Example: Signal Source with Noise

194

Location: ~/ettus_workshop/flowgraphs/signal_source_noise.grc

Example: Signal Source with Noise Running

195

Example: Dial Tone / Touch Tone

196

Location: ~/ettus_workshop/flowgraphs/dial_tone_interactive.grc

Example: Dial Tone / Touch Tone

197

Location: ~/ettus_workshop/flowgraphs/dial_tone_interactive.grc

Example: Filters - Flowgraph

198

Location: ~/ettus_workshop/flowgraphs/filters_basic.grc

Enable [E]
or
Disable [D]

Only enable one
Filter per run

Example: Filters - Low Pass

199

Location: ~/ettus_workshop/flowgraphs/filters.grc

Example: Filters - High Pass

200

Location: ~/ettus_workshop/flowgraphs/filters.grc

Example: Filters - Band Pass

201

Location: ~/ettus_workshop/flowgraphs/filters.grc

Example: Filters - Band Reject

202

Location: ~/ettus_workshop/flowgraphs/filters.grc

Example: Frequency Xlating FIR Filter

203

Location: ~/ettus_workshop/flowgraphs/freq_xlate_fir.grc

Example: Frequency Xlating FIR Filter

204

Location: ~/ettus_workshop/flowgraphs/freq_xlate_fir.grc

Example: Frequency Xlating FIR Filter

205

Location: ~/ettus_workshop/flowgraphs/freq_xlate_fir.grc

Example: Frequency Xlating FIR Filter

206

Location: ~/ettus_workshop/flowgraphs/freq_xlate_fir.grc

Example: Frequency Xlating FIR Filter

207

Location: ~/ettus_workshop/flowgraphs/freq_xlate_fir.grc

Example: Frequency Xlating FIR Filter

208

Location: ~/ettus_workshop/flowgraphs/freq_xlate_fir.grc

Example: Transmitting Signal Source

209

Location: ~/ettus_workshop/flowgraphs/signal_source_tx.grc

- An OOT module is a GNU Radio component that does not live within the GNU Radio source tree, and is not included

with the GNU Radio distribution

- OOT modules allow third-parties to extend GNU Radio with their functions and blocks

- Comprehensive GNU Radio Archive Network (CGRAN)

- Directory of open-source OOT modules

- Not a hosting site

- Most OOT modules are hosted on GitHub

- http://www.cgran.org/

- gr_modtool

- The swiss army knife of module editing / creating

- https://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules

Out-of-Tree (OOT) Modules

210

CGRAN

211

1. git clone <repository>

2. cd <repository-path>

3. mkdir build && cd build

4. cmake ../

5. make -j4

6. sudo make install

7. sudo ldconfig

Out-of-Tree Module Installation

212

GNU Radio: Creating a Block / OOT

213

- Blocks can be written with Python or C++
- gr_modtool is used to create all of the boilerplate files
- Python or C++ QA
- For blocks with strict types, we use suffixes to declare the input and output types.

This block operates on floats, so we give it the suffix _ff: Float in, float out. Other
suffixes are _cc (complex in, complex out), or simply _f (a sink or source with no
in- or outputs that uses floats).

- Standard Block Types:
- Synchronous Blocks (1:1)
- Decimation Blocks (N:1)
- Interpolation Blocks (1:M)
- General Blocks (N:M)

- Hierarchical Blocks
- Hierarchical blocks are blocks that are made up of other blocks. They

instantiate the other GNU Radio blocks (or other hierarchical blocks) and
connect them together. A hierarchical block has a “connect” function for this
purpose. Hierarchical blocks define an input and output stream much like
normal blocks.

-
More details see: https://wiki.gnuradio.org/index.php/BlocksCodingGuide

GNU Radio: Creating a Block

214

$ gr_modtool help
Usage:
gr_modtool <command> [options] -- Run <command> with the given options.
gr_modtool help -- Show a list of commands.
gr_modtool help <command> -- Shows the help for a given command.

List of possible commands:

Name Aliases Description
===
disable dis Disable block (comments out CMake entries for files)
info getinfo,inf Return information about a given module
remove rm,del Remove block (delete files and remove Makefile entries)
makexml mx Make XML file for GRC block bindings
add insert Add block to the out-of-tree module.
newmod nm,create Create a new out-of-tree module
rename mv Rename a block in the out-of-tree module.

GNU Radio: Creating a Block

215

$ gr_modtool help newmod
Usage: gr_modtool nm [options].
 Call gr_modtool without any options to run it interactively.

Options:
 General options:
 -h, --help Displays this help message.
 -d DIRECTORY, --directory=DIRECTORY
 Base directory of the module. Defaults to the cwd.
 -n MODULE_NAME, --module-name=MODULE_NAME
 Use this to override the current module's name (is
 normally autodetected).
 -N BLOCK_NAME, --block-name=BLOCK_NAME
 Name of the block, where applicable.
 --skip-lib Don't do anything in the lib/ subdirectory.
 --skip-swig Don't do anything in the swig/ subdirectory.
 --skip-python Don't do anything in the python/ subdirectory.
 --skip-grc Don't do anything in the grc/ subdirectory.
 --scm-mode=SCM_MODE
 Use source control management (yes, no or auto).
 -y, --yes Answer all questions with 'yes'. This can overwrite
 and delete your files, so be careful.

 New out-of-tree module options:
 --srcdir=SRCDIR Source directory for the module template.

GNU Radio: Creating a Block

216

Create your first Out-Of-Tree Module with the gr_modtool:

$ gr_modtool newmod workshop
Creating out-of-tree module in ./ gr-workshop... Done.
Use 'gr_modtool add' to add a new block to this currently empty module.

$ ls
gr-workshop

$ cd gr-workshop/
$ ls
CMakeLists.txt MANIFEST.md apps cmake docs examples grc

include lib python swig

GNU Radio: Creating a Block

217

Since we are dealing with Python in this tutorial we only need to concern ourselves with the Python
folder and the grc folder.

$ gr_modtool add -t sync -l python
GNU Radio module name identified: workshop
Language: Python
Enter name of block/code (without module name prefix): my_multiply_py_ff
Block/code identifier: my_multiply_py_ff
Enter valid argument list, including default arguments: multiple
Add Python QA code? [Y/n] y
Adding file 'python/my_multiply_py_ff.py'...
Adding file 'python/qa_my_multiply_py_ff.py'...
Editing python/CMakeLists.txt...
Adding file 'grc/workshop_my_multiply_py_ff.xml'...
Editing grc/CMakeLists.txt...

GNU Radio: Creating a Block

218

First let's take a look at the file: python/my_multiply_py_ff.py

Notice that there are "<...>" scattered in
many places. These placeholders are from
gr_modtool and tell us where we need to
alter things.

The gr.sync_block.init takes in 4 inputs:
self, name, and the size/type of the input and
output vectors. First, we want to make the
item size a single precision float or
numpy.float32 by removing the "<" and the
">".

GNU Radio: Creating a Block

219

python/my_multiply_py_ff.py
 The other piece of code that has the placeholders is in

the work() function but let us first get a better
understanding of the work() function.

The work() function is where the actual processing
happens, where we want our code to be. Because this
is a sync block, the number of input items always
equals the number of output items because
synchronous block ensures a fixed output to input rate.
There are also decimation and interpolation blocks
where the number of output items are a user specified
multiple of the number of input items.

GNU Radio: Creating a Block

220

python/my_multiply_py_ff.py
 The "in0" and "out" simply store the input and output

in a variable to make the block easier to write.

The signal processing can be anything including if
statements, loops, function calls but for this example we
only need to modify the out[:] = in0 line so that our
input signal is multiplied by our variable multiple.

What do we need to add to make the in0 multiply by
our multiple?

out[:] = in0*self.multiple

GNU Radio: Creating a Block

221

python/my_multiply_py_ff.py
 The last item to modify within the new block is to assign

the input value of “multiple” to self.multiple
within the init() function.

self.multiple = multiple

GNU Radio: Creating a Block

222

Completed python/my_multiply_py_ff.py

GNU Radio: Creating a Block

223

Next, we will create the QA (Quality Assurance) tests.

Open the file: python/qa_my_multiply_py_ff.py

gr_unittest adds support for checking
approximate equality of tuples of float and
complex numbers. The only part we need
to worry about is the def test_001_t
function. We know we need input data so
let us create data. We want it to be in the
form of a vector so that we can test multiple
values at once.

GNU Radio: Creating a Block

224

python/qa_my_multiply_py_ff.py

Create a vector of floats within the test_001_t function:

src_data = (0, 1, -2, 5.5, -0.5)

We also need output data so we can compare the input of the block to ensure that it is doing what
we expect it to do. Let us multiply by 2 for simplicity.

expected_result = (0, 2, -4, 11, -1)

Next, create a flowgraph with the src_data:

src = blocks.vector_source_f(src_data)

GNU Radio: Creating a Block

225

python/qa_my_multiply_py_ff.py

Next, we will call our created function with a value of 2.

mult = multiply_py_ff(2)

Next, we will create a Vector Sink block.

snk = blocks.vector_sink_f()

Next, connect the blocks:

self.tb.connect (src, mult)
self.tb.connect (mult, snk)

Next, run the flowgraph and capture the resulting data from the Sink.
self.tb.run ()
result_data = snk.data ()

GNU Radio: Creating a Block

226

python/qa_my_multiply_py_ff.py

The last step is to compare the expected result and actual result. The last value, “6” in the function
call below will compare the results to decimal places

self.assertFloatTuplesAlmostEqual (expected_result, result_data, 6)

The completed test_001_t() function should match below:

GNU Radio: Creating a Block

227

Next, we will test the QA code. Run it with:

$ python python/qa_my_multiply_py_ff.py
.
--
Ran 1 test in 0.003s

OK

GNU Radio: Creating a Block

228

Open the file grc/workshop_my_multiply_py_ff.xml

The last step to create a block is to
modify the XML file.

GRC uses the XML files for all the
options we see.

GNU Radio: Creating a Block

229

Boilerplate / default: grc/workshop_my_multiply_py_ff.xml

GNU Radio: Creating a Block

230

File: grc/workshop_my_multiply_py_ff.xml

We can change the name that appears and the category it will appear in GRC. The category is
where the block will be found in GRC. Examples of categories tag are Audio and Waveform
Generators used in previous examples. Examples of names tag are the QT GUI Time Sink or the
Audio Sink.

We will leave the default values for this section.

GNU Radio: Creating a Block

231

File: grc/workshop_my_multiply_py_ff.xml

This is referring to the parameter that we used in the very beginning when creating our block: the
variable called "multiple". Fill it in as shown below:

GNU Radio: Creating a Block

232

File: grc/workshop_my_multiply_py_ff.xml

The next placeholder can be found in the sink and source tags. We can see that it is asking for a
type so we can simply erase everything in the tag and replace it with "float" for both the source
and the sink blocks. That should do it for this block. The best way to get more experience writing
XML files is to look at the source code of previously made blocks such as the existing multiple block.

GNU Radio: Creating a Block

233

Now we will install our block into GNU Radio Companion.

cd ~/workarea/gr-workshop
mkdir build
cd build
cmake ..
make
sudo make install
sudo ldconfig

Now return to GNU Radio Companion and click the “Reload Blocks” button:

GNU Radio: Creating a Block

234

In the Block listing on the right side of GRC, at the very bottom, you should note a
new category, “workshop”.

Clicking on “workshop”, will reveal our newly created block.

GNU Radio: Creating a Block

235

Next, we will create a flowgraph to demonstrate our newly created block.

Start with dragging a Signal Source, Throttle, my_multiply_py_ff,
and QT Time Sink block onto the canvas.

GNU Radio: Creating a Block

236

First, we need to adjust the Data Types of the blocks with the Blue (Complex) data types.

Select each block and press the “Down” arrow, which will change the Type. Modify each block so
all inputs are Orange (Float). Data types can also be changed by double clicking on each block and
adjusting the option within the pulldown menu.

GNU Radio: Creating a Block

237

Next, we need to add two inputs to the QT Time Sink block.

Double click on the QT Time Sink block to
display its options.

Modify the field “Number of Inputs” to be a
value of “2”.

Modify “Y min” to be “-2”
Modify “Y max” to be “2”

Under the “Config” tab,
adjust the value for “Control Panel” to “Yes”

Click “OK” to close the window.

GNU Radio: Creating a Block

238

Next, connect all of the blocks as shown below:

Note, our block “my_multipl_py_ff” is still highlighted Red. We need to add a value
to it for our variable “Multiple”.

Double click on the block “my_multipl_py_ff” and enter a value of “0.5” for
“Multiple”.

Click “OK” to close the Block Options window.

GNU Radio: Creating a Block

239

Your flowgraph should match as below:

GNU Radio: Creating a Block

240

Next, save the flowgraph from the top menu “File” -> “Save As”. Enter any filename.

Finally we will run the flowgraph. Click the “Execute the flowgraph” button in the menu.

Note: The Blue line is the
samples which are being
passed through our
“my_multiple_py_ff”
block, which are being
multiplied by 0.5, resulting in
a signal 50% smaller than the
original (Red) signal.

Try adjusting the “Y
Offset”, “Y Range”, and
“X Max” settings by clicking
the “+/-” buttons within the
Control Panel of the QT
Time Sink.

GNU Radio: Creating a Block

241

Stop the flowgraph and try modifying the “Multiple” value within the newly created block.

Try values such as 0.1, 1.5, 2.0 or 3.0, and then run the flowgraph again.

GNU Radio: Creating a Block

242

Official GNU Radio Creating a block in Python Tutorial
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_Python

Official GNU Radio Creating a block in C++ Tutorial
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_C%2B%2B

Full GNU Radio Tutorial (Tutorial links above are contained within this multi-part series)
https://wiki.gnuradio.org/index.php/Guided_Tutorial_Introduction

GNU Radio Block Coding Guide
https://wiki.gnuradio.org/index.php/BlocksCodingGuide

Broadcast FM Spectrum

243

Broadcast FM Spectrum

244

- Commercial FM radio is usually between frequencies 87.8 and 108.0 MHz (USA/Canada)

- 101 channels total

- Channels are 200 KHz wide, aligned to a multiple of 100 KHz

- The FCC spaces local FM channels 400 KHz apart

- In USA and Canada, only odd multiples are used

- In parts of Europe, India, and Africa, even and odd multiples are used

- The maximum permitted frequency error of the unmodulated carrier is specified to be within 2000 Hz of the assigned frequency

- System was originally mono, and stereo was added later in 1960s

FM Radio Broadcasting

245

- RDS is the Radio Data System, created in 1984

- In the USA, known as Radio Broadcast Data System (RBDS)

- Standard for embedding small amounts of digital data into commercial FM broadcasts

- RDS transmits time, station identification, programme information, and radio text (currently-playing
song title and artist)

- 4 KHz-wide BPSK signal, data rate of 1187.5 bits per second, on a 57 KHz sub-carrier

- The sub-carrier is set to the third harmonic of the 19 KHz stereo pilot tone

- There are exactly 48 cycles of the sub-carrier during every data bit

- Uses CRC for error correction

RDS / RBDS

246

- AF (alternative frequencies) -- This allows a receiver to re-tune to a different frequency providing the same station when the first signal becomes too weak
(e.g., when moving out of range). This is often used in car stereo systems.

- CT (clock time) -- Can synchronize a clock in the receiver or the main clock in a car. Due to transmission vagaries, CT can only be accurate to within 100 ms of UTC.

- EON (enhanced other networks) -- Allows the receiver to monitor other networks or stations for traffic programmes, and automatically temporarily tune into that station.

- PI (programme identification) -- This is the unique code that identifies the station. Every station receives a specific code with a country prefix. In the US, PI is determined by applying a formula to the station's
call sign.

- PS (programme service) -- This is simply an eight-character static display that represents the call letters or station identity name. Most RDS capable receivers display this information and, if the station is
stored in the receiver's presets, will cache this information with the frequency and other details associated with that preset.

- PTY (programme type) -- This coding of up to 31 pre-defined programme types (e.g., in Europe: PTY1 News, PTY6 Drama, PTY11 Rock music) allows users to find similar programming by genre. PTY31
seems to be reserved for emergency announcements in the event of natural disasters or other major calamities.

- REG (regional) -- This is mainly used in countries where national broadcasters run "region-specific" programming such as regional opt-outs on some of their transmitters. This functionality allows the user to
"lock-down" the set to their current region or let the radio tune into other region-specific programming as they move into the other region.

- RT (radio text) -- This function allows a radio station to transmit a 64-character free-form text that can be either static (such as station slogans) or in sync with the programming (such as the title and artist of
the currently playing song).

- TA, TP (traffic announcement, traffic programme) -- The receiver can often be set to pay special attention to this flag and, for example, stop the tape/pause the CD or retune to receive a traffic bulletin. The TP
flag is used to allow the user to find only those stations that regularly broadcast traffic bulletins whereas the TA flag is used to signal an actual traffic bulletin in progress, with radio units perhaps performing
other actions such as stopping a cassette tape (so the radio can be heard) or raising the volume during the traffic bulletin.

- TMC (traffic message channel) -- Digitally encoded traffic information. Not all RDS equipment supports this, but it is often available for automotive navigation systems. In many countries only encrypted traffic
data is broadcast, and so an appropriate decoder, possibly tied to a subscription service, is required to use the traffic data.

RDS Information Fields

247

FM Receiver in GRC

248

Location: ~/ettus_workshop/flowgraphs/wbfm_rx_commercial.grc

FM Receiver in GRC (ISM)

249

Location: ~/ettus_workshop/flowgraphs/wbfm_rx_ism.grc

FM Transmitter in GRC (ISM)

250

Location: ~/ettus_workshop/flowgraphs/wbfm_tx_ism.grc

FM TX/RX Full Duplex in GRC (ISM)

251

Location: ~/ettus_workshop/flowgraphs/wbfm_full_duplex_ism.grc

FM Receiver in GRC (Dual Channel FIR)

252

Location: ~/ettus_workshop/flowgraphs/wbfm_dual_rx_fir.grc

FM Receiver in GRC (Dual Channel FIR)

253

Location: ~/ettus_workshop/flowgraphs/wbfm_dual_rx_fir.grc

1. sudo apt-get install liblog4cpp5-dev

2. git clone https://github.com/bastibl/gr-rds.git

3. cd gr-rds

4. mkdir build && cd build

5. cmake ../

6. make -j4

7. sudo make install

8. sudo ldconfig

Out-of-Tree Module Installation: gr-rds

254

- In GRC, open:
~/ettus_workshop/flowgraphs/rds_rx.grc

- Verify correct antenna under Options Block
- Start flowgraph
- Tune to strong station with RDS
- Adjust Gain slider if needed

Reference: ~/ettus_workshop/instructions/install.html

* Skip if using LiveSDR Environment

FM RDS Receiver in GRC - Part 1

255

Location: ~/ettus_workshop/flowgraphs/rds_rx.grc

FM RDS Receiver in GRC - Part 2

256

Location: ~/ettus_workshop/flowgraphs/rds_rx.grc

Out-of-Tree Module Installation: gr-rds

257

FM RDS Transmitter in GRC

258

Location: ~/ettus_workshop/flowgraphs/rds_tx.grc

OFDM BPSK Transmitter and Receiver

259

Location: ~/ettus_workshop/flowgraphs/ofdm_tx.grc

OFDM BPSK Transmitter and Receiver

260

Location: ~/ettus_workshop/flowgraphs/ofdm_rx.grc

OFDM BPSK Transmitter and Receiver

261

Location: ~/ettus_workshop/flowgraphs/ofdm_tx.grc

OFDM BPSK Transmitter and Receiver

262

Location: ~/ettus_workshop/flowgraphs/ofdm_rx.grc

OFDM BPSK Transmitter and Receiver

263

Location: ~/ettus_workshop/flowgraphs/ofdm_rx.grc

1. git clone git://git.osmocom.org/gr-osmosdr

2. cd gr-osmosdr/

3. mkdir build && cd build

4. cmake ../

5. make -j4

6. sudo make install

7. sudo ldconfig

gr-osmosdr

264

● Generic SDR hardware interface for GNU Radio
● Uses UHD under-the-hood
● Needed for GQRX
● https://github.com/osmocom/gr-osmosdr

Reference: ~/ettus_workshop/instructions/install.html

* Skip if using LiveSDR Environment

- A free open-source SDR receiver built on GNU Radio and QT

- Features:

- Real-time FFT plot and waterfall

- Demodulators for AM, SSB, NBFM (mono), WBFM (stereo)

- Record and playback to/from IQ file

- Basic remote control through TCP socket connection

- Created by Alexandru Csete in Denmark

- http://gqrx.dk/

- https://github.com/csete/gqrx

GQRX

265

1. sudo apt-get install qt5-default qttools5-dev-tools libqt5svg5 libqt5svg5-dev

2. git clone https://github.com/csete/gqrx.git

3. cd gqrx

4. mkdir build && cd build

5. cmake ../

6. make -j4

7. sudo make install

8. sudo ldconfig

Installing GQRX

266

- To start, run at command prompt: gqrx

- Select Device, Set Input Rate, Decimation and Bandwidth

Reference: ~/ettus_workshop/instructions/install.html

GQRX Screenshot

267

GQRX Screenshot

268

Demo - GQRX (1M Point FFT / 50 MS/s)

269

Frequency 871 MHz - NFM, P25, LTE, GSM, WCDMA

gr-paint

270

- Based on “Spectrum Painter” by polygon

- Github: https://github.com/polygon/spectrum_painter

- gr-OOT created by Ron “drmpeg” Economos

- SDR based OFDM transmitter that "paints" monochrome images into the waterfall

- Converts a byte stream of image data into a 4K IFFT OFDM IQ sequence for transmission

- Github: https://github.com/drmpeg/gr-paint

1. git clone https://github.com/drmpeg/gr-paint.git

2. cd gr-paint

3. mkdir build

4. cd build

5. cmake ..

6. make

7. sudo make install

8. sudo ldconfig

gr-paint - Installation

271

Reference: ~/ettus_workshop/instructions/install.html

* Skip if using LiveSDR Environment

1. Open GQRX (gqrx -r)

2. Open Devices Menu (or auto popup)

3. Select USRP device

4. Set 2 MS/s sample rate

5. Set 2 MHz Bandwidth

6. Click OK

gr-paint - RX demo

272

1. In Main GQRX window, click “Play” button

2. Tune to 915 MHz

3. Under “Input controls” tab set Gain to 50-70dB

4. Select proper Antenna

gr-paint - RX demo

273

1. Under “FFT Settings” tab set:

FFT Size: 65536

Adjust Pandapter to the left to make Waterfall larger, FFT smaller

dB Range to ~ 100 dB

gr-paint - RX demo

274

Demo - gr-paint

275

Demo - gr-paint

276

gr-fosphor

277

- Open-source, GPU-accelerated FFT and Waterfall display tool

- GNU Radio block for RTSA-like spectrum visualization

- Uses OpenCL and OpenGL for acceleration

- High frame rate, great for visualizing fast-changing signals

- RFNoC variant for X3xx, E3xx USRPs - FPGA accelerated FFT/Waterfall

- Created by Sylvain Munaut, @tnt, https://github.com/smunaut

- Homepage http://sdr.osmocom.org/trac/wiki/fosphor

- Video demo https://www.youtube.com/watch?v=mjD-l3GAghU

gr-fosphor - GPU - Screenshot 50 MS/s

278

Frequency 871 MHz - NFM, P25, LTE, GSM, WCDMA

RFNoC gr-fosphor - Screenshot 50 MS/s

279

Frequency 871 MHz - NFM, P25, LTE, WCDMA

RFNoC gr-fosphor - Screenshot 50 MS/s

280

Frequency 871 MHz - NFM, P25, LTE, WCDMA

RFNoC gr-fosphor - Screenshot 50 MS/s

281

Frequency 871 MHz - NFM, P25, LTE, WCDMA

RFNoC gr-fosphor - Screenshot 200 MS/s

282

* Same Center Frequency as previous captures (871 MHz)

RFNoC gr-fosphor - Screenshot 200 MS/s

283

2.4 GHz WiFi

gr-fosphor - Installation - Intel OpenCL

284

Install Dependencies:

sudo apt-get install cmake xorg-dev libglu1-mesa-dev opencl-headers ocl-icd-opencl-dev alien clinfo

Install GLFW3:

cd ~/workarea
git clone https://github.com/glfw/glfw
cd glfw
mkdir build
cd build
cmake ../ -DBUILD_SHARED_LIBS=true
make
sudo make install
sudo ldconfig

Reference: ~/ettus_workshop/instructions/install.html
* Skip if using LiveSDR Environment

gr-fosphor - Installation - Intel OpenCL

285

Installing Intel OpenCL

mkdir $HOME/tmp

cd $HOME/tmp

cp ~/ettus_workshop/files/opencl_runtime_14.2_x64_4.5.0.8.tgz .

or

wget http://registrationcenter.intel.com/irc_nas/4181/opencl_runtime_14.2_x64_4.5.0.8.tgz

tar xf opencl_runtime_14.2_x64_4.5.0.8.tgz

cd pset_opencl_runtime_14.1_x64_4.5.0.8/rpm

Reference: ~/ettus_workshop/instructions/install.html
* Skip if using LiveSDR Environment

gr-fosphor - Installation - Intel OpenCL

286

Installing Intel OpenCL

alien --to-tgz opencl-1.2-base-pset-4.5.0.8-1.noarch.rpm
tar xf opencl-1.2-base-4.5.0.8.tgz
sudo mv opt/intel /opt
rm -rf opt

alien --to-tgz opencl-1.2-intel-cpu-4.5.0.8-1.x86_64.rpm
tar xf opencl-1.2-intel-cpu-4.5.0.8.tgz

sudo mkdir -p /etc/OpenCL/vendors

sudo mv opt/intel/opencl-1.2-4.5.0.8/etc/intel64.icd /etc/OpenCL/vendors/

sudo mkdir -p /opt/intel/opencl-1.2-4.5.0.8/lib64/

sudo mv opt/intel/opencl-1.2-4.5.0.8/lib64/* /opt/intel/opencl-1.2-4.5.0.8/lib64/
rm -rf opt

Reference: ~/ettus_workshop/instructions/install.html

* Skip if using LiveSDR Environment

gr-fosphor - Installation

287

cd ~/workarea

git clone git://git.osmocom.org/gr-fosphor

cd gr-fosphor

mkdir build

cd build

cmake ..

make

sudo make install

sudo ldconfig

Reference: ~/ettus_workshop/instructions/install.html

* Skip if using LiveSDR Environment

gr-fosphor - Demo with osmocom_fft

288

$ osmocom_fft -f 98e6 -A TX/RX -g 50 -s 10e6 -F

gr-fosphor - GNU Radio Block / Shortcuts

289

- Block within GNU Radio

Shortcut Key Bindings for gr-fosphor
z: toggle zoom mode
a/d: move zoom frequency down/up
s/w: adjust zoom width
q/e: adjust screen split

 between waterfall and fft
space: pause display

(left)/(right) adjust dB/div
(up)/(down) adjust ref level

gr-fosphor - Example Flowgraph

290

Location: ~/ettus_workshop/flowgraphs/fosphor.grc

Inspectrum

291

- Off-line spectrum analysis tool
- https://github.com/miek/inspectrum

- Spectrogram with zoom/pan
- Large (multi-gigabyte) file support

Reference: ~/ettus_workshop/instructions/install.html

Install dependency: liquid-dsp

cd ~/workarea
git clone git://github.com/jgaeddert/liquid-dsp.git
cd liquid-dsp
./bootstrap.sh

note Ubuntu 16.04 requires additional ./configure flags
CFLAGS="-march=native" ./configure --enable-fftoverride

Ubuntu 14.04
./configure

make
sudo make install
sudo ldconfig

Inspectrum

292

- Off-line spectrum analysis tool
- https://github.com/miek/inspectrum

- Spectrogram with zoom/pan
- Large (multi-gigabyte) file support

Reference: ~/ettus_workshop/instructions/install.html

cd ~/workarea

sudo apt-get install qt5-default libfftw3-dev cmake pkg-config

git clone https://github.com/miek/inspectrum.git

cd inspectrum

mkdir build

cd build

cmake ..

make

sudo make install

Inspectrum

293

LTE FSK WBFM with OFDM HD Sidebands
(screenshots taken from older Inspectrum version which used vertical time display)

Inspectrum

294

LTE

FSK

Inspectrum

295

802.11b WiFi (20 MHz)

Inspectrum

296

LTE

Demo - Remote Replay Attack

297

- Common in inexpensive, low power RF modules.
- Wireless light switches / outlets, wireless thermometers,

wireless doorbells, older/inexpensive garage door
openers, wireless outdoor motion alarms, inexpensive
RC toys, older keyfobs, shock collars, etc.

- Will typically run in 70cm ISM band (433.92 MHz) or 315MHz
(to avoid DC spike, use offset tuning and tune 200 KHz low)

- Common modulations: ASK/OOK, FSK, some PSK
- Most newer keyfobs/garage door openers will use rolling codes,

one time codes, or challenge-response authentication to mitigate

- First step is to find the signal.

$ osmocom_fft --args "type=b200" -A TX/RX -s 1e6 -f 433.72e6 -g 50 -F

Or use GQRX and tune to 433.72 MHz

Demo - Remote Replay Attack

298

- Recording Signal:

$ /usr/local/lib/uhd/examples/rx_samples_to_file \
 --args "type=b200" \
 --type float \
 --freq 433.72e6 \
 --rate 1e6 \
 --gain 0 \ # adjust gain based on distance from remote
 --ant TX/RX \
 --bw 1e6 \
 --file on.f32

Demo - Remote Replay Attack

299

- Replaying Signal:

$ /usr/local/lib/uhd/examples/tx_samples_from_file \
 --args "type=b200" \
 --type float \
 --freq 433.72e6 \
 --rate 1e6 \
 --gain 50 \
 --ant TX/RX \
 --bw 1e6 \
 --file on.f32

Analyzing Captures - Unpacking Tarball

300

$ cd ~/ettus_workshop/captures/

$./unpack_tarballs.sh

Inspectrum - Analyzing Captures

301

~/ettus_workshop/captures/switch_on.f32

~/ettus_workshop/captures/switch_off.f32

Inspectrum - Analyzing Captures

302

$ inspectrum --help
Usage: inspectrum [options] file
spectrum viewer

Options:
 -h, --help Displays this help.
 -r, --rate <Hz> Set sample rate.

Arguments:
 file File to view.

$ inspectrum -r 1e6 ~/ettus_workshop/captures/turning_on.f32
$ inspectrum -r 1e6 ~/ettus_workshop/captures/turning_off.f32

Additional interesting capture files located in ~/ettus_workshop/captures/*.f32
LTE_20e6.f32, wifi_30e6.f32, fsk_1e6.f32, wbfm_2e6.f32,
Iridium_10e6.f32, mexsat_600e3.f32

Inspectrum - Analyzing Captures

303

~/ettus_workshop/captures/LTE_12e6.f32

Inspectrum - Analyzing Captures

304

~/ettus_workshop/captures/wifi_30e6.f32

Inspectrum - Analyzing Captures

305

~/ettus_workshop/captures/iridium_10e6.f32

Inspectrum - Analyzing Captures

306

~/ettus_workshop/captures/fsk_250e3.f32

Inspectrum - Analyzing Captures

307

~/ettus_workshop/captures/mexsat_600e3.f32
"X" is Dual Chirp waveform for Synchronization
Overlap due to seeing multiple spot beams (each sat has 128 steerable beams)

- SpectrumWiki - http://www.spectrumwiki.com/Index.aspx

Signal Identification Resources

308

- Signal Identification Guide

- http://www.sigidwiki.com/wiki/Signal_Identification_Guide

Signal Identification Resources

309

Automatic Dependent Surveillance – Broadcast (ADS–B) is a surveillance technology in which an aircraft
determines its position via satellite navigation and periodically broadcasts it, enabling it to be tracked. The
information can be received by air traffic control ground stations as a replacement for secondary radar. It
can also be received by other aircraft to provide situational awareness and allow self separation.

ADS–B is "automatic" in that it requires no pilot or external input. It is "dependent" in that it depends on
data from the aircraft's navigation system.

Implementation of ADS-B is mandatory in European airspace as well as in Australia. North American
implementation is still voluntary, with a mandate arriving in 2020 via the FAA's "NextGen" program.

ADS-B-equipped aircraft broadcast ("squitter") their position, velocity, flight number, and other interesting
information to any receiver within range of the aircraft. Position reports are typically generated once per
second and flight identification every five seconds.

Mode S is the transponder protocol used in modern commercial aircraft. A Mode S-equipped aircraft
replies to radar interrogation by either ground radar (secondary surveillance) or other aircraft ("Traffic
Collision Avoidance System", or TCAS).

ADS-B / Mode-S Overview

310

- Operates at 1090 MHz

- PPM Modulation (Pulse Position Modulation)

- Packets are 10 bytes long

- Packets may contain:

- GPS position (latitude, longitude)

- Pressure

- Altitude

- Callsign

- Ground track

- Ground speed

ADS-B / Mode-S Overview

311

- Created by Nick Foster

- https://github.com/bistromath/gr-air-modes

- Raw (or minimally processed) output of packet data ADS-B / Mode-S / TCAS

- Parsed text

- SQLite database backend

- Built-in Google Maps Display

- KML for use with Google Earth

- SBS-1-compatible output for use with e.g. PlanePlotter or Virtual

- Radar Server

- FlightGear multiplayer interface for real-time display of traffic within the simulator

gr-air-modes

312

Demo - gr-air-modes

313

- Embedded Architecture

- Open Embedded Linux OS

- Zynq 7020 FPGA with ARM Cortex A9 dual-core CPU

- Based on Analog Devices AD9361 Transceiver

- 2x2 MIMO, 50 MHz - 6 GHz, 61.44 MS/s, 56 MHz bandwidth

- TX and RX filter banks

- Integrated uBlox GPS receiver

- Supports UHD, GNU Radio, RFNoC

- E312 is an E310 with battery

- E313 is an E310 with IP67 chassis and PoE

E310, E312, E313 - Device Overview

314

The USRP E3xx is designed to process data locally on the Zynq 7020 FPGA and Cortex ARM CPU.

● Data rate from the AD9361 transceiver to FPGA is capable of 61.44 MS/s
● Data rate into Cortex ARM CPU is about 12 MS/s
● Data rate over Ethernet interface to external host is about 2 or 3 MS/s

Network Mode

● Streams complex samples directly over Ethernet interface to external host, similar to N2xx and X3xx
● Should be used as "debugging mode", and not meant for production use

E310, E312, E313 - Embedded Architecture

315

E310, E312, E313 - SD Card Images

316

● Contains the Linux OpenEmbedded OS and FPGA image
● http://files.ettus.com/e3xx_images/
● Release 4 is the current release (includes UHD 3.9.2 and GNU Radio 3.7.9)
● Release 5 is coming soon (includes UHD 3.10.1.1 and GNU Radio 3.7.10.2)
● SG1 = Speed Grade 1 (667 MHz ARM CPU)
● SG3 = Speed Grade 3 (866 MHz ARM CPU)

● Images are compressed with “xz”. Use either “xz” or “xzdec” utilities to decompress

$ xzdec e300.direct.xz

● Write image to SD card either with “dd” or “bmaptool” utilities

$ sudo dd if=e300.direct of=/dev/sdX
$ sudo bmaptool copy e300.direct.xz /dev/sdX --nobmap

Additional details can be found in the on the USRP E300 Embedded Hardware Resources page
within the Ettus Research Knowledge Base.

https://kb.ettus.com/Ettus_USRP_E300_Embedded_Family_Hardware_Resources#SD_Card_Images

E310, E312, E313 - WiFi USB

317

● A USB WiFi dongle may be used with the E310
● The Edimax EW-7811Un N150 works out-of-the-box
● Any WiFi dongle with kernel support should work out-of-the-box
● Generate PSK for wireless network:

$ wpa_passphrase <SSID> >> /etc/wpa_supplicant.conf

● Edit the file /etc/wpa_supplicant.conf to match below, updating any missing values:

network={
 ssid="YOUR_SSID"
 psk=HASH_VALUE
 key_mgmt=WPA-PSK
 proto=RSN WPA
 pairwise=CCMP TKIP
 group=CCMP TKIP
}

E310, E312, E313 - WiFi USB

318

● Start wpa_supplicant with the specified configuration file:

$ wpa_supplicant -B -D nl80211 -i wlan0 -c /etc/wpa_supplicant.conf

● Request DHCP address with the command below:

$ udhcpc -i wlan0

● Verify an IP address has been assigned:

$ ip a

E310, E312, E313 - Development

319

Notes on Cross-Compiling and SDK (Software Development Kit)

● SDKs contain the compiler toolchain and libraries for the embedded device.

● The SDK enables you to compile and link on one platform, but target another platform

● What you build on the external host (development machine) will run

on the embedded E310 host (production machine)

● Cross-compiling is recommended due to the limited CPU processing power and memory on E3xx

● PyBOMBS (Python Build Overlay Managed Bundle System) includes a recipe that automates the

installation of all the elements necessary to cross-compile for the E3XX.

Additional details and step-by-step Application Note within the Ettus Research Knowledge Base:

https://kb.ettus.com/Software_Development_on_the_E310_and_E312

E310, E312, E313 - Development

320

● SSHFS (SSH Filesystem) is a filesystem client to mount and interact with directories and files
located on a remote server or workstation over a normal ssh connection.

● Example:

$ sshfs user@host:/mountpoint/ local_mount_point/

● Useful to use to transfer files to/from E31x from host computer

E310, E312, E313 - Cross Compiling

321

On Host Machine:

Ensure “Bash” is set as your default shell. Some version of Ubuntu will default to “Dash”

sudo dpkg-reconfigure dash

"Select No"

Verify /bin/sh is pointing to /bin/bash

ll /bin/sh

Create working directory on Host machine:

mkdir -p ~/e300

E310, E312, E313 - Cross Compiling

322

Download Open Embedded SDK
- Example name: “oecore-x86_64-armv7ahf-vfp-neon-toolchain-nodistro.0.sh”
- Located in the /e3xx-release-xx/ directories on files.ettus.com
- http://files.ettus.com/e3xx_images/e3xx-release-4/

wget http://files.ettus.com/e3xx_images/e3xx-release-4/oecore-x86_64-armv7ahf-vfp-neon-toolchain-nodistro.0.sh

Install the Open Embedded SDK

bash oecore-x86_64-armv7ahf-vfp-neon-toolchain-nodistro.0.sh

Enter your working directory “~/e300” for the target directory when prompted.

SDK installation may take a few minutes.

When completed, change into the ~/e300 directory, and source the SDK Environment file:

cd ~/e300
source ./environment-setup-armv7ahf-vfp-neon-oe-linux-gnueabi

E310, E312, E313 - Cross Compiling

323

Verify compiler is setup correctly:

echo $CC

Example output:
arm-oe-linux-gnueabi-gcc -march=armv7-a -mfloat-abi=hard -mfpu=neon
--sysroot=/home/demo/e300/sysroots/armv7ahf-vfp-neon-oe-linux-gnueabi

Next, create a src/ directory within the ~/e300 directory:

mkdir src
cd src

Verify you’re in the correct directory with pwd command:

pwd

Expected output:
/home/demo/e300/src

E310, E312, E313 - Cross Compiling

324

Next download the UHD source code:
git clone https://github.com/EttusResearch/uhd.git

Change into the cloned directory:
cd uhd

Optional: Checkout specific version of UHD:
git checkout release_003_009_005

Change into the host directory:
cd host/

Create build directory and change into it:
mkdir build && cd build

E310, E312, E313 - Cross Compiling

325

Next, run the CMake command:

cmake -DCMAKE_TOOLCHAIN_FILE=../host/cmake/Toolchains/oe-sdk_cross.cmake
-DCMAKE_INSTALL_PREFIX=/usr -DENABLE_E300=ON ..

Note the additional CMAKE_TOOLCHAIN_FILE option.

Note: CMAKE_INSTALL_PREFIX points to /usr
- This references the $DESTDIR/usr location on the E3xx, not the host machine.

Note: ENABLE_E300=ON
- This enabled E3xx specific functionality within UHD

Next, run the make command to build. This example uses 4 cores of the host machine to build.
make -j4

Next, install to the destination directory, note the DESTDIR flag, this will install it into our working directory.
make install DESTDIR=~/e300

E310, E312, E313 - Cross Compiling

326

Next you will need to create an environment setup file. This will point important system variables to the correct
path.

Create the file setup_env within the ~/e300 folder on your host machine:
cd ~/e300
touch setup_env
nano setup_env

File contents, note the LOCALPREFIX is set to ~/newinstall/usr:

LOCALPREFIX=~/newinstall/usr
export PATH=$LOCALPREFIX/bin:$PATH
export LD_LOAD_LIBRARY=$LOCALPREFIX/lib:$LD_LOAD_LIBRARY
export LD_LIBRARY_PATH=$LOCALPREFIX/lib:$LD_LIBRARY_PATH
export PYTHONPATH=$LOCALPREFIX/lib/python2.7/site-packages:$PYTHONPATH
export PKG_CONFIG_PATH=$LOCALPREFIX/lib/pkgconfig:$PKG_CONFIG_PATH
export GRC_BLOCKS_PATH=$LOCALPREFIX/share/gnuradio/grc/blocks:$GRC_BLOCKS_PATH
export UHD_RFNOC_DIR=$LOCALPREFIX/share/uhd/rfnoc/
export UHD_IMAGES_DIR=$LOCALPREFIX/share/uhd/images

E310, E312, E313 - Cross Compiling

327

Open a new Terminal window, and SSH into the E3xx:

ssh root@192.168.10.2

Verify you’re within the root home directory:

root@ettus-e3xx-sg3:~# pwd

Expected output:
/home/root

Create ~/newinstall directory on the E3xx:

root@ettus-e3xx-sg3:~# mkdir newinstall

Next, mount the ~/e300 directory [from your host machine] on to the E3xx with SSHFS, to the
~/newinstall location. Update the username and IP address to match the host configuration:

root@ettus-e3xx-sg3:~# sshfs username@192.168.10.5:e300/ newinstall/

E310, E312, E313 - Cross Compiling

328

Verify that the ~/e300 on the host machine has been successfully mounted on the E3xx:

root@ettus-e3xx-sg3:~# ls ~/newinstall
environment-setup-armv7ahf-vfp-neon-oe-linux-gnueabi src
version-armv7ahf-vfp-neon-oe-linux-gnueabi
setup_env sysroots
site-config-armv7ahf-vfp-neon-oe-linux-gnueabi usr

Next, determine the current UHD which is being used:

root@ettus-e3xx-sg3:~# which uhd_find_devices
/usr/bin/uhd_find_devices

Next, source the setup_env file to re-configure the E3xx to use the newly built UHD version:

root@ettus-e3xx-sg3:~# cd ~/newinstall
root@ettus-e3xx-sg3:~# source ./setup_env

E310, E312, E313 - Cross Compiling

329

Verify that you’re now using the newly built UHD version:

root@ettus-e3xx-sg3:~/newinstall# which uhd_find_devices
/home/root/newinstall/usr/bin/uhd_find_devices

Next, you will need to download the corresponding FPGA images for the newly built UHD. If your
E3xx is not on an internet connected network, this can be a multiple step process.

Start with trying to run the uhd_images_downloader utility:

root@ettus-e3xx-sg3:~/newinstall# cd ~/
root@ettus-e3xx-sg3:~# uhd_images_downloader

Note: If you have internet access configured on the network your E3xx is on, this command will be
successful. If it is not connected to a network with internet it will fail.

E310, E312, E313 - Cross Compiling

330

Example of run without internet access:

root@ettus-e3xx-sg3:~# uhd_images_downloader
UHD_IMAGES_DIR environment variable is set.
Default install location: /home/root/newinstall/usr/share/uhd/images
Images destination: /home/root/newinstall/usr/share/uhd/images
Downloading images from: http://files.ettus.com/binaries/images/uhd-images_003.009.005-release.zip
Downloading images to: /tmp/tmptpuiEg/uhd-images_003.009.005-release.zip
Downloader raised an unhandled exception: ('Connection aborted.', gaierror(-2, 'Name or service
not known'))
You can run this again with the '--verbose' flag to see more information
If the problem persists, please email the output to: support@ettus.com

Note: The URL of the UHD FPGA Zip file it is attempting to download.
Copy this URL and fetch it on your host machine (which should have internet access):

* Note this command is ran on your host machine:
$ cd ~/e300/src
$ wget http://files.ettus.com/binaries/images/uhd-images_003.009.005-release.zip

E310, E312, E313 - Cross Compiling

331

Next you will need to decompress the FPGA archive.

$ unzip uhd-images_003.009.005-release.zip

Decompressing the FPGA Zip file will create a multi-level folder structure. The contents of the images/
folder need to be moved to the images/ location of your new UHD build. Note: You may need to create
the uhd/images/ folder.

$ cd ~/e300/usr/share
$ mkdir -p uhd/images
$ cd uhd/images

Verify you’re in the correct directory:
$ pwd
/home/demo/e300/usr/share/uhd/images

Move the decompressed files to your current directory:
$ mv -v ~/e300/src/uhd-images_003.009.005-release/share/uhd/images/* .

E310, E312, E313 - Cross Compiling

332

Next, return to your E3xx terminal window, and verify that you’re able to use the FPGA images by running:

root@ettus-e3xx-sg3:~# uhd_usrp_probe
linux; GNU C++ version 4.9.2; Boost_105700; UHD_003.009.005-0-g32951af2

-- Loading FPGA image: /home/root/newinstall/usr/share/uhd/images/usrp_e310_fpga_sg3.bit... done
-- Initializing core control...
-- Performing register loopback test... pass
-- Performing register loopback test... pass
-- Performing register loopback test... pass
-- Performing CODEC loopback test... pass
-- Performing CODEC loopback test... pass

Within the output you should note the path of the FPGA image that is being loaded is from your new installation.

E310, E312, E313 - Cross Compiling

333

Upon running uhd_usrp_probe successfully, you can then run the compiled UHD example programs by
navigating to the examples/ directory of the new build on the E3xx:

root@ettus-e3xx-sg3:~# cd ~/newinstall/usr/lib/uhd/examples/

./rx_samples_to_file --freq 100e6 --gain 0 --ant TX/RX --rate 1e6 --null

Press CTRL+C to stop the program after it has ran for a moment.

Note the version string that is printed, this should match the version you have checked out and compiled.

At this point, if you created a tarball of the ~/e300/usr directory and transfer it to the E3xx, untar it locally,
and then update the setup_env file’s paths, you will have a freshly created UHD installation without the
need to use SSHFS. SSHFS is useful for quick testing and debugging while building.

E310, E312, E313 - Cross Compiling

334

Next we will cross compile an independent version of the UHD example program ‘rx_samples_to_file’
for the E3xx.

First start by navigating to the ~/e300 directory on your host machine and create a working space:

cd ~/e300
mkdir rx_samples
cd rx_samples

Next, we will need to copy files from the UHD repo and create a Toolchain folder for the OE SDK Cross
Compile CMake instructions file.

mkdir -p cmake/Toolchains
cp ~/e300/src/uhd/host/cmake/Toolchains/oe-sdk_cross.cmake cmake/Toolchains/
cp ~/e300/src/uhd/host/examples/rx_samples_to_file.cpp my_rx_samples_to_file.cpp
cp ~/e300/src/uhd/host/examples/init_usrp/CMakeLists.txt .

E310, E312, E313 - Cross Compiling

335

Verify your directory structure matches by running the ‘tree’ command:

$ tree
.
├── cmake
│ └── Toolchains
│ └── oe-sdk_cross.cmake
├── CMakeLists.txt
└── my_rx_samples_to_file.cpp

2 directories, 3 files

E310, E312, E313 - Cross Compiling

336

The first action item is to modify the CMakeLists.txt file to reference
‘my_rx_samples_to_file’

nano CMakeLists.txt

Update all occurrences of ‘init_usrp’
to be ‘my_rx_samples_to_file’

Quick tip, use the Linux utility ‘sed’ to replace text
inline of a file:

sed -i “s/init_usrp/my_rx_samples_to_file/g" CMakeLists.txt

E310, E312, E313 - Cross Compiling

337

Next, modify the my_rx_samples_to_file.cpp file to add additional text to display that it is our
locally built version:

nano my_rx_samples_to_file.cpp

Locate the section (Near Line 209):

int UHD_SAFE_MAIN(int argc, char *argv[]){
 uhd::set_thread_priority_safe();

...

After the uhd::set_thread_priority_safe(); line, add the code:

std::cout << std::endl << "This is my locally built version of
rx_samples_to_file!!" << std::endl;

Exit nano and save the modified file.

E310, E312, E313 - Cross Compiling

338

Next, we will build this version of my_rx_samples_to_file.

On the host machine, run the commands:

mkdir build-arm
cd build-arm

cmake -Wno-dev -DCMAKE_TOOLCHAIN_FILE=../cmake/Toolchains/oe-sdk_cross.cmake
-DCMAKE_INSTALL_PREFIX=/usr -DUHD_DIR=~/e300/usr/lib/cmake/uhd/
-DUHD_INCLUDE_DIRS=~/e300/usr/include -DUHD_LIBRARIES=~/e300/usr/lib/libuhd.so
../

make

Note: If you encounter an error:
/home/demo/e300/usr/lib/libuhd.so: error adding symbols: File in wrong format

Make sure you have sourced the SDK Environment file:
source ~/e300/environment-setup-armv7ahf-vfp-neon-oe-linux-gnueabi

E310, E312, E313 - Cross Compiling

339

Next, return to the terminal window connect to your E3xx. Navigate to the build-arm directory:

root@ettus-e3xx-sg3:~# cd ~/newinstall/rx_samples/build-arm/

Run your my_rx_samples_to_file program. Note, you will see the additional text that you added in your
stdout:

./my_rx_samples_to_file --freq 1e9 --rate 1e6 --gain 0 --ant TX/RX --null
linux; GNU C++ version 4.9.2; Boost_105700; UHD_003.009.005-0-g32951af2

This is my locally built version of rx_samples_to_file!!

Creating the usrp device with: ...
-- Loading FPGA image:
/home/root/newinstall/usr/share/uhd/images/usrp_e310_fpga_sg3.bit... done
-- Initializing core control...
-- Performing register loopback test... pass

E310, E312, E313 - Linux Commands

340

To unmount an SSHFS attached folder:

root@ettus-e3xx-sg3:~# umount ~/newinstall/

Find Release information:
root@ettus-e3xx-sg3:~# cat /etc/version
201601141734

root@ettus-e3xx-sg3:~# cat /etc/version-image
Timestamp: 201601150140
Release: Release-4
Image: gnuradio-demo-image

E310, E312, E313 - Linux Commands

341

To configure a static IP address edit

/etc/network/interfaces

to look like

auto eth0
iface eth0 inet static
 address your-ip
 netmask your-netmask
 gateway your-gateway

E310, E312, E313 - Linux Commands

342

root@ettus-e3xx-sg3:~# cat /proc/cpuinfo
processor: 0
model name : ARMv7 Processor rev 0 (v7l)
Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpd32
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x3
CPU part : 0xc09
CPU revision : 0

processor: 1
model name : ARMv7 Processor rev 0 (v7l)
Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpd32
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x3
CPU part : 0xc09
CPU revision : 0

Hardware : Xilinx Zynq Platform
Revision : 0000
Serial : 0000000000000000

E310, E312, E313 - ARM NEON

343

The E310/E312 ARM CPU includes NEON support

ARM NEON is a general-purpose SIMD engine that efficiently processes current and future multimedia
formats, enhancing the user experience.

NEON technology can accelerate multimedia and signal processing algorithms such as video
encode/decode, 2D/3D graphics, gaming, audio and speech processing, image processing, telephony,
and sound synthesis by at least 3x the performance of ARMv5 and at least 2x the performance of ARMv6
SIMD.

NEON technology is a 128-bit SIMD (Single Instruction, Multiple Data) architecture extension for the ARM
Cortex-A series processors, designed to provide flexible and powerful acceleration for consumer
multimedia applications, delivering a significantly enhanced user experience. It has 32 registers, 64-bits
wide (dual view as 16 registers, 128-bits wide.

Additional Information on ARM NEON:
https://www.arm.com/products/processors/technologies/neon.php

E31x - WBFM TX Demo

344

Location: ~/ettus_workshop/flowgraphs/e310/e310_wbfm_tx.grc

E31x - WBFM TX Demo

345

Generate Python file from flowgraph

Copy Python file to E31x
$ scp ~/ettus_workshop/flowgraphs/e310_wbfm_tx.py root@192.168.10.2:~/.

Copy audio file to E31x
$ scp ~/ettus_workshop/sources/audio2.wav root@192.168.10.2:~/.

SSH to E31x
$ ssh root@192.168.10.2

E31x - WBFM TX Demo

346

./e310_wbfm_tx.py --help
linux; GNU C++ version 4.9.2; Boost_105700; UHD_003.009.002-0-unknown

Usage: e310_wbfm_tx.py: [options]

Options:
 -h, --help show this help message and exit
 --wavfile=WAVFILE Set wavfile [default=/home/root/test.wav]
 --center-freq=CENTER_FREQ
 Set center_freq [default=915M]
 --rf-gain=RF_GAIN Set rf_gain [default=50]

E31x - WBFM TX Demo

347

Run Python Flowgraph on E31x
./e310_wbfm_tx.py --wavfile /home/root/audio2.wav

Tune with another radio to 915 MHz

E31x - WBFM TX Demo

348

Potential Error: TypeError: __init__() got an unexpected keyword argument ‘fh’

Due to mismatch of GNU Radio versions running on E31x and Host

E31x - WBFM TX Demo

349

Resolve by editing generated Python file.

Remove line 69:
fh=-1.0,

- Performs DSP operations to demodulate commercial WBFM radio station on E310

- Performs DSP operations to calculate FFT of received spectrum

- Streams demodulated Audio and FFT bins to remote host via ZeroMQ (ZMQ) sockets

- GUI controls run on host, commands are sent to E31x via XMLRPC interface

E31x - WBFM ZMQ Demo

350

Application Note “Streaming processed data from the E31x with GNU Radio and ZMQ”
https://kb.ettus.com/Streaming_processed_data_from_the_E31x_with_GNU_Radio_and_ZMQ

E31x - WBFM ZMQ Demo

351

E31x Device Flowgraph
Location: ~/ettus_workshop/flowgraphs/e310/e310_fm_rx_zmq__e310.grc

E31x - WBFM ZMQ Demo

352

E31x Host Flowgraph
Location: ~/ettus_workshop/flowgraphs/e310/e310_fm_rx_zmq__host.grc

E31x - WBFM ZMQ Demo

353

Generate Python from Flowgraph within GRC for fm_receiver_zmq.grc

E31x - WBFM ZMQ Demo

354

Note file name and location in console where it was Generated

E31x - WBFM ZMQ Demo

355

Check connectivity to E31x by pinging.

$ ping 192.168.10.2

E31x - WBFM ZMQ Demo

356

Copy generated .py file to E31x

$ scp ~/ettus_workshop/flowgraphs/e310_fm_rx_zmq__e310.py root@192.168.10.2:~/.

E31x - WBFM ZMQ Demo

357

SSH to E31x

$ ssh root@192.168.10.2

E31x - WBFM ZMQ Demo

358

uname -a

uhd_find_devices

Verify you’re running on E310

E31x - WBFM ZMQ Demo

359

./e310_fm_rx_zmq__e310.py

Run Flowgraph on E310 (Python)

E31x - WBFM ZMQ Demo

360

Potential Error:
TypeError: push_sink_make() takes at most 5 arguments (6 given)

Due to mismatch of GNU Radio versions running on E31x and Host

E31x - WBFM ZMQ Demo

361

Resolve by editing generated Python file.

Edit lines near 51 & 52 (ZeroMQ Push Sink lines) by removing the last argument: “, -1”

self.zeromq_push_sink_0_0_0 = zeromq.push_sink(gr.sizeof_float, 1024, 'tcp://*:9999', 100, False ,
-1)
self.zeromq_push_sink_0 = zeromq.push_sink(gr.sizeof_float, 1, 'tcp://*:9997', 100, False , -1)

Final Result:

self.zeromq_push_sink_0_0_0 = zeromq.push_sink(gr.sizeof_float, 1024, 'tcp://*:9999', 100, False)
self.zeromq_push_sink_0 = zeromq.push_sink(gr.sizeof_float, 1, 'tcp://*:9997', 100, False)

E31x - WBFM ZMQ Demo

362

Return to GRC on Host Machine

Start “e310_fm_rx_zmq__host.grc” FG

Tune to strong local FM station

Adjust RF Gain

Adjust Audio Gain

E31x - WBFM ZMQ Demo

363

Stopping Flowgraphs

Kill flowgraph on host by either hitting “X” in corner of window, or “Stop” symbol within GRC

In Terminal which you’re connect to the E310 via SSH, hit “Enter” to stop the flowgraph.

Always shut down the E310 safely to avoid SD card corruption.

shutdown -h now

FRS Background

364

The Family Radio Service (FRS) is an improved walkie-talkie radio system authorized in the United States
since 1996. This personal radio service uses channelized frequencies around 462 and 467 MHz in the
ultra high frequency (UHF) band.

● Common “bubble-pack” type walkie-talkies
● Frequency Modulation (FM)
● 14 Channels
● Average range 0.5 to 1.5km in urban environment

○ Under exceptional conditions up to 60 km
(LOS, hilltop to hilltop)

● Some channels shared with General Mobile Radio
Service (GMRS)

● GMRS requires license, allow for better antennas,
higher power, repeaters

FRS CTCSS / DCS Codes

365

CTCSS (Continuous Tone-Coded Squelch System)

● Continuously superimposes sub-audible tone on the transmitted signal, ranging from 67 to 254 Hz.

● Filters out unwanted chatter from other users on the same frequency

● Sometimes called "privacy codes" or "private line codes" (PL codes)

○ Offer no protection from eavesdropping

○ Only intended to help share busy channels

● Do nothing to prevent desired transmissions from being jammed by stronger signals having a different code.

DCS (Digital-Coded Squelch)

● Digital replacement for CTCSS

● Trademark of Motorola

● Adds 134.4 bps (sub-audible) bitstream to the transmitted audio

FRS Transceiver

366

- How to synchronize multiple X300 / X310 devices together for applications such as:

- MIMO

- Distributed MIMO

- Phased Arrays

- Beam-Forming (BF)

- Direction-Finding (DF)

- The X300 / X310 have 2x2 MIMO capability out-of-the-box

- Data streaming requirements

Multi-USRP Synchronization

367

X300/X310 Inputs and Outputs

368

X300/X310 Motherboard

369

2 interchangeable RF daughterboards

X300/X310 Block Diagram

370synchronization

transceiversDSP

data
debug

- Daughterboards serve as interchangeable RF front ends (two slots per motherboard)

- Direct conversion transceivers: low noise amplifier (LNA), mixer, local oscillator (LO),

quadrature analog/digital converters (ADC, DAC)

- One LO per daughterboard.

RF Front-End

371

Name Bandwidth Frequency

TwinRX 80 MHz per channel (160 MHz total) 10 MHz – 6 GHz

UBX 40 MHz, 160 MHz 10 MHz – 6 GHz

CBX 40 MHz, 120 MHz 1.2 GHz – 6 GHz

SBX 40 MHz, 120 MHz 400 MHz – 4.4 GHz

WBX 40 MHz, 120 MHz 50 MHz – 2.2 GHz

LFRX, LFTX 30 MHz 0 MHz - 30 MHz

BasicRX, BasicTX 250 MHz 1 MHz – 250 MHz

Transceivers capable of MIMO (Multiple Input Multiple Output) operation must meet two basic requirements:

• Sample clock synchronization - sample clocks are synchronized and aligned

• Device time synchronization - DSP operations are performed on samples aligned in time

(from the same sample clock edge)

• Sample clocks must have common frequency reference, and edges must be aligned

• All channels must acquire and process samples that represent the same temporal event

High Channel Count MIMO

372

Distributed MIMO systems require synchronization over wide geographical regions:

• GPS Disciplined Oscillator (GPSDO)
– 10 MHz oven controlled crystal oscillator (OCXO) with 20 ppb frequency accuracy

– Improve accuracy to 0.01 ppb when GPS receiver locks to satellite constellation

– Time synchronization within 50 ns

– at 900 MHz, 20 ppb is 18 Hz

Distributed MIMO

373

Jackson Labs LC_XO

Phased array applications like beamforming and direction-finding have additional requirements:

• Channel phase synchronization:

– known phase relationships between RF inputs and outputs

• Periodic Calibration:

– remove phase errors due to phase-locked loops (PLLs), mixers, amplifiers, and filter, which vary

with time, temperature, mechanical condition, etc

• System-specific phase errors are constant and can be removed with calibration

Phased Arrays

374

Application Requirements

375

The X300/X310 has three synchronization signals:

• 10 MHz Reference – Frequency alignment of PLLs. Frequency alignment means all PLLs in system are derived from

a common (master) reference. The slave PLLs inherit frequency accuracy of the master reference. The PLLs do not all

need to output the same frequency (i.e., ADC sample clock fixed at 200 MHz, LOs are controlled by user)

• Pulse-per-second (PPS) Trigger – Time alignment of DSP operations, sample clocks, and hardware control

commands within and between devices. Time alignment means actions are performed on samples of the same

temporal event on all channels. (e.g., person A and person B have watches that are off. A and B are told to look

outside at exactly noon to see if person C walks by.) The PPS ensures all devices have same notation of time.

• GPS Antenna – Lock GPSDO module to satellite constellation. GPS provides highly accurate 10 MHz reference (0.1

ppb) and PPS signals.

Synchronization Signals

376

• PLL – feedback circuit, output signal frequency is derived from input (reference) signal

frequency

• Multiple PLLs used in USRP to generate master reference, sample clock, and LOs

• Each PLL has its own frequency and phase that is independent of others

• Analogy: multiple runners moving at different speeds (frequency) and starting at different

times (phase)

• Frequency alignment - all PLLs must derive frequency from a common 10 MHz reference

• Frequency accuracy depends on the type of oscillator in reference PLL

Phase-Locked Loops

377

Frequency Accuracy

378

• Recall that MIMO systems require clock synchronization and time synchronization

• One sample clock is shared between two daughterboards – frequency alignment

• 10 MHz reference ensures frequency alignment of sample clocks across devices

• Samples must be acquired and operated on at the same time across all channels

• Counter on each device (in FPGA) keeps track of time, driven by master sample clock

– 64-bit unsigned integer

• PPS signal used to synchronize device time

Device Time

379

Single Device

380

master reference
(10 MHz)

master clock
(sample rate) local oscillator

(channel frequency)

local oscillator
(channel frequency)

2x2 MIMO capable
 out-of-box

Constant phase offset is due to independent dividers in LOs, and phase errors
introduced by other RF components. Master reference only aligns LO frequency,
does not correct phase errors.

Multiple Devices

381

Requires common, external
reference and PPS signal to be
supplied to each device.

All LOs exhibit constant phase
offset relative to each other.

• Daisy chain two devices for 4x4 MIMO

• Master exports internal 10 MHz reference (TCXO) and 1 PPS to slave

• Caution: propagation delay increases with channel count

Daisy Chain

382

Host PC

10 GigE
Switch

• Use OctoClock or OctoClock-G to build large, scalable MIMO systems

• 8-channel clock distribution

• For more than 8 channels, cascade multiple OctoClocks into a tree-structure

• OctoClock requires external 10 MHz reference and 1 PPS signal, which gets distributed

• OctoClock-G contains integrated GPSDO module, generates its own 10 MHz and 1 PPS

• Use matched-length cables

OctoClock CDA-2990

383

Large, Scalable MIMO Systems

384

• Recall: phased arrays require known phase relationship between RF inputs and outputs

• PLL on each daughterboard generates LO signal independently on each channel

• 10 MHz reference ensures frequency alignment of LOs across all channels

• Fractional-N dividers in PLLs introduce random phase offset after each LO retune

• Some daughterboards have resync capability after retune

• Phase ambiguity on WBX is due to external divider at output of PLL

Daughterboards

385

Name Phase Sync

TwinRX Yes

UBX Yes

CBX No

SBX Yes

WBX Yes, with 180° ambiguity

LFRX, LFTX, BasicRX, BasicTX No LOs

MIMO Test System Diagram

386

RF Signal
Generator

4-way
Splitter

USRP X310

USRP X310

OctoClock-G

Host PC

4-channel MIMO receiver with the X310 and GNU Radio

1.6 GHz + 1 KHz

matched-length cables

• Use a single USRP Source block to configure multiple devices in a MIMO system

• Specify more than one motherboard

• Display I and Q waveforms on separate Scope Sinks for clarity

• Set TX frequency to 1 KHz + RX frequency for 1 KHz tone

4-Channel Receiver Flowgraph

387

• Each device uses its own internal 10 MHz reference (TCXO, 2.5 ppm)

• No common PPS signal, device time is not synchronized across devices

• Daughterboards on the same device have the same frequency and constant phase offset

(out-of-the-box MIMO capability)

• Daughterboards across devices have different frequencies and phase drift

No Synchronization

388

No Synchronization

389

 Ch1 and Ch2 are from first X310
Ch3 and Ch4 are from second X310

• OctoClock-G 10 MHz reference (OCXO, 20 ppb) distributed to all devices

• OctoClock-G PPS trigger distributed to all devices

• All daughterboards have the same frequency and constant phase offset

• System meets sample clock and device time synchronization requirement for MIMO

• Synchronize channel phase by correcting constant phase offset in software

Clock and Time Synchronization

390

Clock and Time Synchronization

391

Frequency increased on both devices and is closer to 1 KHz, due to more accurate reference signal

• OctoClock-G 10 MHz reference (OCXO, 20 ppb) distributed to all devices

• No common PPS signal, device time is not synchronized across devices

• All daughterboards have the same frequency

• Daughterboards across devices experience phase drift

Clock Synchronization Only

392

Clock Synchronization Only

393

Ch1 and Ch3 are from different devices and drift closer together

• OctoClock-G 10 MHz reference on one device only

• OctoClock-G PPS trigger distributed to all devices

• Daughterboards across devices have different frequencies

• Daughterboards across devices have phase drift due to difference in frequency

• Frequency error (difference from 1 kHz tone) depends on master oscillator

Frequency Accuracy

394

Device 0 – internal TCXO (2.5 ppm)

Device 1 – external OCXO reference (20 ppb)

Frequency Accuracy

395

Oscillators on Device 0,
Device 1, and OctoClock
all have different
frequency accuracies

Frequency alignment
affects how close the
demodulated tone is to the
desired 1 KHz source

Signal source will
contribute frequency error

Compare and contrast
following slides with each
other

Device 0 – external OCXO reference (20 ppb), Device 1 – internal TCXO (2.5 ppm)

Frequency Accuracy

396

Both devices use internal TCXO reference (2.5 ppm)

Frequency Accuracy

397

Both devices use external OCXO reference (20 ppb)

Frequency Accuracy

398

• Phase offsets change after LO is re-tuned

• UBX and SBX will resync LO phase if re-tune command is synchronized to device time

• WBX will resync LO phase with 180 degree phase ambiguity due to external divider at

output of PLL

• CBX does not have resync LO phase capability, re-calibration required after each re-tune

Resync LO Phase

399

Resync LO Phase

400

Resync LO Phase

401

Resync LO Phase

402

• Re-tuning with timed commands is not exposed through USRP Sink and Source blocks

in GNU Radio (gr-uhd)

• User must edit the generated Python code for the flowgraph

• Must set timed command for each device individually

Resync LO Phase

403

Resync LO Phase

404

Resync LO Phase

405

Resync LO Phase

406

• Scalable MIMO systems must sustain fast data transfer rates

• More channels requires more streaming bandwidth

• X300/X310 provides multiple high-speed interface options (1 GbE, 10 GbE, PCIe)

• Consider FPGA processing to reduce data rate

MIMO Data Transfer

407

What is the data rate of a 4-channel MIMO receiver with 10 MHz signal bandwidth?

• 10 MHz BW requires quadrature (IQ) sample rate of 10 Msps

• 14-bit quadrature ADC requires:

• 32 bits per sample, 4 bytes per sample, using the sc16 OTW format

• Each channel acquires 320 Mbps

• Full system data rate is 1280 Mbps

MIMO Data Transfer

408

MIMO Data Transfer

409

Using the 1 GbE interface:

• Maximum streaming bandwidth is 25 Msps

• 4-channel receiver requires two X300 devices

• Requires host PC with multiple 1 GbE ports (one per X300 device)

• Will NOT work through Ethernet switch

MIMO Data Transfer

410

Using the 10 GbE interface:

• Realistic streaming bandwidth is 200 Msps

• Known-good 10 Gbps Ethernet cards:

– Intel X520-DA2, Intel X540-T2, Intel X550-TA2, Intel X710-DA2

• Can the host keep up with the data rate?

MIMO Data Transfer

411

Using the PCIe interface:

• PCI-Express Kit for desktop computers is capable of 200 Msps

• ExpressCard Kit for laptop computers is capable of 50 Msps

• There are other limitations with PCI-Express, no advantages over 10 GbE

MIMO Data Transfer

412

- Performs high-rate processing:

- front-end filtering (CIC and half-band), DUC, DDC, interfaces to ADC and DAC

- Manages communication with the host computer

- Provides a register mapping for UHD to all devices on the MD and DB

- Open-source and hosted on GitHub

- Hosted as a Git submodule in UHD repository

- Entirely written in Verilog

- UHD stores FPGA images by default in the folder /usr/local/share/uhd/images

- https://github.com/EttusResearch/fpga/tree/UHD-3.9.2

USRP FPGA

413

- USRP FPGA Devices:
- N200: Xilinx® Spartan® 3A-DSP 1800

- N210: Xilinx Spartan 3A-DSP 3400

- B200: Xilinx Spartan 6 XC6SLX75

- B210: Xilinx Spartan 6 XC6SLX150

- E310: Xilinx Zynq XC7Z020

- X300: Xilinx Kintex-7 XC7K325T

- X310: Xilinx Kintex-7 XC7K410T

USRP FPGA Devices

414

- Toolchains:
- N200, N210, B200, B210: Xilinx ISE, System Edition, version 14.7

- E310, X300, X310: Xilinx Vivado

- May use free WebPack Edition for E310

- Must use non-free Design Edition or System Edition for X300 / X310

- Version 2014.4 for UHD 3.9.x

- Version 2015.4 for UHD 3.10.x

- X300 / X310 used Xilinx ISE 14.7 prior to UHD 3.9.0

- http://www.xilinx.com/products/design-tools/vivado.html

- Simulation with Xilinx XSim and ModelSim PE, DE, SE

USRP FPGA Toolchains

415

- FPGA image builds are done with Makefiles from Linux (Ubuntu 14.04/16.04) command line

- Should also work under RHEL/CentOS 7 (command-line) and Microsoft Windows (GUI and project file)

- To build X300/X310 FPGA image, invoke Makefile with specific target:

make X300_XG

- Option to create project file:

make X300_XG GUI=1

- Two ways to modify and add custom functionality to FPGA:

- Edit Verilog code directly (harder)

- Use RFNoC (easier)

Building and Modifying USRP FPGA

416

- FPGA configuration targets for X-series:
- X300_HG & X310_HG

- Port 0: 1 GbE / Port 1: 10 GbE
- DRAM FIFO
- Only UHD 3.10

- X300_XG & X300_XG
- Port 0: 10 GbE / Port 1: 10 GbE (Dual 10 GbE)
- DRAM FIFO
- Only UHD 3.10

- X300_HGS & X300_HGS
- Port 0: 1 GbE / Port 1: 10 Gb
- SRAM FIFO
- Only UHD 3.8 and 3.9

- X300_XGS & X300_XGS
- Port 0: 10 GbE / Port 1: 10 Gb (not Dual 10 GbE)
- SRAM FIFO
- Only UHD 3.8 and 3.9

Building and Modifying USRP FPGA

417

- FPGA configuration targets for X-series:
- X300_HA & X310_HA

- Port 0: 1 GbE / Port 1: Aurora
- DRAM FIFO
- Xilinx Aurora interface
- Only UHD 3.10

- X300_XA & X300_XA
- Port 0: 10 GbE / Port 1: Aurora
- DRAM FIFO
- Xilinx Aurora interface
- Only UHD 3.10

Building and Modifying USRP FPGA

418

- UHD stores FPGA images by default in the folder /usr/local/share/uhd/images

- FPGA images are tied to a specific version of UHD

- The 003.009.005.tag file in the images folder indicates the corresponding UHD version

- Run the uhd_images_downloader utility to obtain FPGA images for your current version of UHD

- Run the usrp_x3xx_fpga_burner utility to write the FPGA image onto the flash memory

- JTAG interface can be used for recovery from bricking

- Loaded image will not persist across power-cycles, so you must use usrp_x3xx_fpga_burner

after JTAG’ing to make the image persist

- Use free Xilinx iMPACT or Xilinx Vivado Lab Edition to perform JTAG

Flashing USRP FPGA for X300 / X310

419

X300 / X310 Device Recovery via JTAG

420

1. Download Xilinx Vivado Lab 2015.4. Must be Vivado 2015.4.

2. Install it, by default it ends up in /opt/Xilinx

3. Install cable driver:
sudo /opt/Xilinx/Vivado_lab/2015.4/data/xicom/cable_drivers/lin64/install_script/install_drivers/install_digilent.sh

4. To reload the new udev rules that tell your linux system to make the JTAG adapter available to normal users

sudo udevadm control --reload

5. Run Vivado, go to Hardware Manager, connect your X310 via USB JTAG and power it up

6. Within Hardware Manager, Tools -> Autoconnect

7. Right-click on the FPGA in the hardware "list", program device, select the appropriate .bit from UHD typically:
 /usr/share/uhd/images/usrp_x310_fpga_HG.bit

After you have flashed the FPGA image via JTAG, you will then need to connect it via ethernet, and reflash the image before
power cycling the device with the "uhd_image_loader" utility, which will write a new FPGA image to the EEPROM.

* Annotated step-by-step Application Note can be found in the Ettus Research Knowledge Base (kb.ettus.com)

- RF Network-on-Chip (RFNoC) is a technology that enables modular SDR development on FPGAs

- The goal is to make FPGA computing more accessible, and automatically manage the integration

and implementation details, and let the user focus more on their algorithm and application

- Many applications underutilize the FPGA, but would benefit from moving some processing from the

CPU to the FPGA

- parallelizable algorithms

- large amounts of data, high sampling rates

- low-latency signal processing

RFNoC

421

- Example application: 200 MHz real-time Welch's Algorithm for spectral density estimation

RFNoC (cont’d)

422

- Goals:

- Heterogeneous Processing

- Support composable and modular designs using CPU, FPGA, and beyond

- Maintain ease-of-use, and make FPGA acceleration easier on USRP devices

- Provide tight integration with popular SDR frameworks (i.e., GNU Radio)

RFNoC (cont’d)

423

- Goals:

- Heterogeneous Processing

- Support composable and modular designs using CPU, FPGA, and beyond

- Maintain ease-of-use, and make FPGA acceleration easier on USRP devices

- Provide tight integration with popular SDR frameworks (i.e., GNU Radio)

RFNoC (cont’d)

424

- RFNoC:

- Provides a software API with an FPGA infrastructure

- Manages communication and data flow between host and FPGA

- Provides simple software and HDL interfaces to the user

- Scalable design for massive distributed processing

- Fully supported by UHD API, and in GNU Radio and GRC

- Switching fabric is industry-standard AXI Crossbar

- Provides space for user code in Computation Engines (CE)

- many types of CE: FFT, FIR filter, cryptography, compression, etc.

- CEs may be interconnected together in almost any order to create specific data flows

- these data flows may cross the FPGA-host boundary

- messages can be passed between the host and CEs

RFNoC (cont’d)

425

RFNoC (cont’d)

426

RFNoC (cont’d)

427

- CEs can be any mix of:

- Blocks from the Ettus Research library (open-source)

- User-defined blocks

- Third-party Xilinx IP (closed-source)

RFNoC - Computation Engines

428

- Ettus Research provides a default FPGA image and a library of CE:

- FIFO

- FFT

- FIR filter

- window

- vector IIR

- keep-one-in-N

- add/subtract stream

- null source

- null sink

- split stream

RFNoC - CEs by Ettus Research

429

- RFNoC is part of UHD, and is free and open-source

- Currently lives in its own UHD branch, but will be moved in the main UHD branch later this year

- Supported on E310, E312, E313, X300, X310

- Requires the Xilinx Vivado toolchain to build an FPGA image

- Available now, you can start using it today

- Requirements:

- Use rfnoc-devel branch of UHD

- Use GNU Radio 3.7.6 or newer

- Use gr-ettus component of GNU Radio

- Use gr-uhd component of GNU Radio

- Xilinx Vivado, Design Edition or System Edition, version 2014.4

- only needed if you want to build your own RFNoC-enabled FPGA images

RFNoC Availability and Status

430

- https://kb.ettus.com/RFNoC

- https://kb.ettus.com/Getting_Started_with_RFNoC_Development

- http://www.ettus.com/blog/2015/06/rfnoc-for-high-performance-sdr

- RFNoC presented at Wireless @ Virginia Tech, 2015

- https://www.youtube.com/watch?v=8cPd3t88djE

- http://conferences.sigcomm.org/sigcomm/2013/papers/srif/p45.pdf

- http://www-int.etec.uni-karlsruhe.de/seiten/conferences/past/WSR2014/Papers/wsr14_21.pdf

- GRCon16 - It's the RFNoC Life for Us, Martin Braun

- https://www.youtube.com/watch?v=51rpjJ2W0Qs

RFNoC Resources

431

- E31x Based on Zynq 7020

- Equipped with dual-core ARM Cortex-A9 processor (667 MHz SG1 / 866 MHz SG3)

- 85k Logic Cells

- 53,200 Loop-Up Tables (LUTs)

- 106,400 Flip-Flops

- 4.9 Mb Block RAM

- 220 DSP Slices

- 200 I/O Pins

- Compatible with the free Xilinx Vivado WebPACK Edition

RFNoC - Zynq Family

432

RFNoC - Zynq Family

433

- E3xx runs customized Open Embedded (OE) Linux Distribution

“OpenEmbedded is a software framework used for creating Linux distributions aimed for, but not

restricted to, embedded devices. The build system is based on BitBake recipes, which behave like

Gentoo Linux ebuilds.”

- Requires cross-compiling for ARM

- Ettus Research offers a free SDK which runs on Ubuntu/Fedora Linux

- Embedded CPU, local processing

- PyBOMBs recipes required to build

- No apt-get, uses “opkg”

RFNoC - E3xx Linux

434

- Advanced eXtensible Interface (AXI)

- Third generation of AMBA interface defined in the AMBA 3 specification

- Open Standard, on-chip interconnect specification

- Facilitates development of multi-processor designs with large numbers of controllers and peripherals

- Targeted at high performance, high clock frequency system designs and includes features that make it

suitable for high speed sub-micrometer interconnect

- Separate address/control and data phases

- Support for unaligned data transfers using byte strobes

- Burst based transactions with only start address issued

- Issuing of multiple outstanding addresses with out of order responses

- Easy addition of register stages to provide timing closure

RFNoC - AXI

435

- X300 and X310 support both 1 and 10 Gigabit Ethernet interface

- Port 0 must be 1 GbE, and Port 1 must be 10 GbE

- Set the MTU to 9000 on 10 GbE:

sudo ifconfig eth0 mtu 9000

- Some motherboards do not provide enough PCI Express (PCIe) bus bandwidth to support higher sample rates.

Motherboards with PCIe 3.0 are required, and the PCIe architecture of the motherboard should be carefully

considered. Slots with dedicated PCIe lanes should be used for 10 GbE cards that will be connected to the X300.

- Intel and Myricom 10 GbE cards are recommended. Mellanox, SolarFlare, and Chelsio 10 GbE cards are not

currently recommended. The Ethernet card should be plugged into the slot that has the most direct connection with

the CPU (PCIe lanes are not shared with another slot).

- The Intel X520 card works very well out-of-the-box. This is the card that is sold on the company website.

- The Intel X710 card is the next generation 10 GbE card, and stable Linux support is not yet 100%, but will be soon

- Maximum suggested length for 10 GbE SFP+ copper cable is 3 m (10 ft)

- Much longer ranges possible with optical fiber

Using 10 Gigabit Ethernet

436

- The User Manual contains some information about performance tuning:

http://files.ettus.com/manual/page_usrp_x3x0_config.html

- Many tools to monitor system performance: top htop iotop iostat sar

- Use an SSD drive, or even a RAM disk. Avoid spinning mechanical drives. Use the SATA-III interface.

- Use an up-to-date kernel. Install kernel 3.19 on Ubuntu 14.04 with:

sudo apt-get install linux-generic-lts-vivid

- Power management (ACPI) on the host system attempts to save power by reducing clock frequencies or powering

off devices while not in use. This can lead to significant performance issues when trying to operate at high sample

rates. We strongly recommend disabling all power management. This may need to be done in the BIOS.

- Monitor the Ethernet interface for problems and errors with the command listed below. The output is driver-specific,

but may give important clues as to what may be happening. For example, a high value on rx_missed_errors for an

Intel NIC indicates that the bus (i.e., PCIe) is not keeping up.

ethtool -S eth0

Host System Performance Tuning

437

- Allow UHD to set thread priority. When UHD spawns a new thread, it may try to boost the thread's scheduling priority.

If setting the new priority fails, UHD prints a warning to the console, as shown below. This warning is harmless; it

simply means that the thread will retain a normal or default scheduling priority.

UHD Warning:

 Unable to set the thread priority. Performance may be negatively affected.

 Please see the general application notes in the manual for instructions.

 EnvironmentError: OSError: error in pthread_setschedparam

- Non-root users need special permission to change the scheduling priority. Add the following line to the

/etc/security/limits.conf file:

@GROUP - rtprio 99

- Replace GROUP with a group in which your user is a member. You may need to logout and log back into the account

for the settings to take effect. See the /etc/group file for a list of groups and group members.

Host System Performance Tuning (cont’d)

438

- The CPU governors dictate the frequency at which the CPU operates and attempt to reduce the CPU frequencies at certain times

to save power. When running at high sample rates, reduction of CPU frequencies can cause significant performance issues. To

prevent those issues, set the governor to the performance policy setting.

- Some documentation at:

http://files.ettus.com/manual/page_usrp_x3x0_config.html#x3x0cfg_hostpc_pwr_cpugov

- On Ubuntu systems:

- Install the cpufrequtils package: sudo apt-get install cpufrequtils

- Edit file /etc/init.d/cpufrequtils and set governor policy setting on the appropriate line (run as root):
sudo sed s/^GOVERNOR=.*$/GOVERNOR=\"performance\\"/g /etc/init.d/cpufrequtils > /etc/init.d/cpufrequtils

- Restart cpufrequtils: sudo /etc/init.d/cpufrequtils restart

- You may also need to run the following in order to keep your system from changing the governor:

sudo update-rc.d ondemand disable

- On Fedora systems, change the CPU governor:

sudo cpupower frequency-set -g performance

Host System Performance Tuning (cont’d)

439

- Interrupt coalescing, although it reduces CPU loading, can cause extra latency resulting in packet flow problems. To

disable it, run:

sudo ethtool -C eth0 adaptive-tx off

- Increase the number of descriptors used by the Ethernet driver, at the cost of higher memory usage:

ethtool -G eth0 rx 4096 tx 4096

- Increase the maximum size of the kernel socket buffers to avoid potential overruns and underruns at high sample

rates. Add the following entries into the /etc/sysctl.conf file (root privileges required):

net.core.rmem_max=33554432

net.core.wmem_max=33554432

Either restart the system, or issue the following commands:

sudo sysctl -w net.core.rmem_max=33554432

sudo sysctl -w net.core.wmem_max=33554432

Host System Performance Tuning (cont’d)

440

- Use the function pthread_setaffinity_np() to dedicate a single core to each thread that calls

multi_usrp::recv(), and use the same function on all the other threads in the program to avoid these cores

- Specify which cores should, and should not, process interrupts

- Be sure to have at least of version 1.0.9 of irqbalance installed

- Add the following line to the file /etc/defaults/grub

GRUB_CMDLINE_LINUX_DEFAULT=”isolcpus=8,24”

- Add the following line to the file /etc/defaults/irqbalance

IRQBALANCE_BANNED_CPUS=1000100

- The IRQBALANCE_BANNED_CPUS is a bitmask to enable interrupt processing for selected cores.

- Find your Ethernet interface in the file /proc/interrupts, take the first argument (the interrupt ID), and edit

all files /proc/irq/<interrupt-id>/smp_affinity and write 1000100 to them

Host System Performance Tuning (cont’d)

441

- OpenBTS and OpenBTS-UMTS (Harvind Samra, David Burgess, Range Networks)

- GSM, GPRS, WCDMA implementation

- EDGE implementation (commercial)

- http://openbts.org/

- srsLTE and srsUE (Paul Sutton, Linda Doyle, Trinity College)

- http://www.softwareradiosystems.com/

- https://github.com/srsLTE/srsLTE

- OpenLTE (Ben Wojtowicz, was Motorola, now Google)

- http://openlte.sourceforge.net/

- Eurecom's OpenAirInterface (OAI)

- http://www.openairinterface.org/

- Amarisoft (Fabrice Bellard)

- Full LTE Release 12 eNodeB implementation

- Commercial, not open-source

- http://www.amarisoft.com/

- http://bellard.org/lte/

Applications - Cellular

442

- GNSS-SDR (Rx) and GPS-SDR-Sim (Tx)
- Open-source, SDR-based GPS receiver and transmitter

- http://gnss-sdr.org

- https://github.com/gnss-sdr/gnss-sdr

- https://github.com/osqzss/gps-sdr-sim

- Navigation Laboratories (NavLabs)
- GNSS Simulator, computation performed on FPGA

- Based in San Diego, California

- http://www.navlabs.com/

- Skydel Solutions / Talen-X
- GNSS Simulator, computation performed on GPU

- Supports GPS (C/A code, P(Y) code, M code), Galileo, GLONASS, BeiDou

- Based in Montreal, Quebec (Skydel) and Dayton, Ohio (Talen-X)

- http://www.skydelsolutions.com/

Applications - GNSS Rx and Tx

443

- GNU Radio Documentation and Wiki:

- https://wiki.gnuradio.org/index.php/Main_Page

- Locally at /usr/local/share/doc/gnuradio-3.7.9/html/index.html

- Ettus Research Knowledge Base (KB):

- https://kb.ettus.com/

- USRP and UHD User Manual:

- http://uhd.ettus.com/

- http://files.ettus.com/manual/

- Locally at /usr/local/share/doc/uhd/doxygen/html/index.html

- Additional Resources on the KB:

- https://kb.ettus.com/Suggested_Videos

- https://kb.ettus.com/Suggested_Reading

Additional Resources

444

- Direct email address

- support@ettus.com

- Mailing list discuss-gnuradio

- https://lists.gnu.org/mailman/listinfo/discuss-gnuradio

- Mailing list usrp-users

- http://lists.ettus.com/mailman/listinfo/usrp-users_lists.ettus.com

- Slack Workspace for GNU Radio

- https://slack.gnuradio.org/ (to sign up)

- https://gnuradio.slack.com/ (to sign in)

- IRC Channels (irc.freenode.net)

- #usrp

- #gnuradio

Getting Help and Technical Support

445

- Cyberspectrum Meetup

- Monthly meetup in the Bay Area / Silicon Valley

- All 25 past events are archived online

- http://www.meetup.com/Cyberspectrum/

- NEWSDR 2019

- Thursday June 13 & Friday June 14

- Boston, Massachusetts

- Free registration ($0)

- http://www.sdr-boston.org/

- GNU Radio Conference 2019

- Week of September 16 to 20

- Huntsville, Alabama

- Registration is ~$500

- The 2015, 2016, 2017, 2018 events are archived online

- http://gnuradio.org/grcon-2019

Upcoming SDR Events

446

- DEFCON 27 & The Wireless Village

- Thursday August 8 through Sunday August 11

- Las Vegas, Nevada

- Registration is $280

- Past events are archived online

- https://www.defcon.org/

- https://www.wirelessvillage.ninja/

