
RFNoC 4 Workshop
Part 1

Jonathon Pendlum – Ettus Research
Neel Pandeya – Ettus Research

GRCon 2020

1

� Part 1

� RFNoC 4 Framework Overview

� Hands on Demos

� Part 2

� FPGA Architecture

� Software Implementation

� GNU Radio Integration

� Hands on RFNoC Block Development

Schedule

2

� PC + Flexible RF Hardware + SDR Framework

Host-Based SDR – Current Situation

3

� PC + Flexible RF Hardware + SDR Framework

� GPP: Multi-core + SIMD -- GNU Radio

Host-Based SDR – Current Situation

GPP

4

Open source toolkit for developing software radios

GNU Radio

5

� PC + Flexible RF Hardware + SDR Framework

� GPP: Multi-core + SIMD -- GNU Radio

Host-Based SDR – Current Situation

GPP

6

� PC + Flexible RF Hardware + SDR Framework

� GPP: Multi-core + SIMD -- GNU Radio

� GPU: High performance FP -- OpenCL, gr-fosphor

Host-Based SDR – Current Situation

GPPGPU

7

� PC + Flexible RF Hardware + SDR Framework

� GPP: Multi-core + SIMD -- GNU Radio

� GPU: High performance FP -- OpenCL, gr-fosphor

� RF HW: Wide bandwidth, large FPGA -- Rate change DSP

Host-Based SDR – Current Situation

GPPGPU RF HW

8

Universal Software Radio Peripheral

Gen 1 Gen 2 Gen 3 (E310) Gen 3 (X310)

FPGA Cyclone 1 Spartan 3 Zynq Kintex 7

Logic Cells 12K 53K 85K 406K

Memory 26KB 252KB 560KB 3180KB

Multipliers NONE! 126 220 1540

Clock Rate 64 MHz 100 MHz 200 MHz 250 MHz

RF Bandwidth 8 MHz 50 MHz 128 MHz 640 MHz

Free Space NONE! ~50% ~60% ~75%

9

� Massive processing requirements

� Welsh’s algorithm for Power Spectrum Estimation

� 1024 FFT + |X|2 + Moving Average at 200 MSPS

Challenges

10

� Massive processing requirements

� Welsh’s algorithm for Power Spectrum Estimation

� 1024 FFT + |X|2 + Moving Average at 200 MSPS

Challenges

11

Highly Parallelizable Math

� Massive processing requirements

� Welsh’s algorithm for Power Spectrum Estimation

� 1024 FFT + |X|2 + Moving Average at 200 MSPS

� Overloaded transport

� 200e6 samp/sec * 32 bits/samp => 6.4 Gb/sec

Challenges

12

Highly Parallelizable Math

Transport
Overloaded

� Massive processing requirements

� Welsh’s algorithm for Power Spectrum Estimation

� 1024 FFT + |X|2 + Moving Average at 200 MSPS

� Overloaded transport

� 200e6 samp/sec * 32 bits/samp => 6.4 Gb/sec

� Latency and Determinism

� Ethernet latency, OS scheduling, precise timing

Challenges

13

Highly Parallelizable Math

Transport
Overloaded

� Everything USRP is open source, available online

(code, firmware, schematics)

� Contains big and expensive FPGA!

� Why do customers not use it?

Opportunity: Use the FPGA!

14

FPGAs are Hard

15

FPGA Design Process

Build for 3 hours, doesn’t work,
forgot to connect clock

“It worked in simulation…”

Timing constraints not met

Design doesn’t fit

� FPGA development is not a requirement of a

communications engineering curriculum

� Math in FPGAs is hard

� Complicated system architecture

Domain vs FPGA Experts

Theory

Experts

FPGA

Experts

16

� Make USRP FPGA acceleration more accessible

� Software API + FPGA infrastructure

� Handles FPGA – Host communication / dataflow

� Provides users simple software and HDL interfaces

� Infrastructure transparent to user -- reusable code

� Trade off flexibility versus resource utilization

� Open source

� Fully supported in GNU Radio

� Modularity and composability

RFNoC: RF Network on Chip

17

RFNoC Architecture

User Application – GNU Radio

NoC Core

Ethernet MAC & PHY

USRP Hardware Driver (UHD)

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

18

RFNoC Block
RFNoC Radio

Block
RFNoC Block

User Application – GNU Radio

USRP Hardware Driver (UHD)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

19

RFNoC Block

� Users implement custom FPGA logic in “RFNoC Blocks”

� Architecturally independent of other logic

� Easy to add and remove RFNoC Blocks

RFNoC Radio

Block
RFNoC Block

User Application – GNU Radio

USRP Hardware Driver (UHD)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

20

RFNoC Block

� Users implement custom FPGA logic in “RFNoC Blocks”

� Architecturally independent of other logic

� Easy to add and remove RFNoC Blocks

� Ettus provides a library of pre-made RFNoC Blocks

� RFNoC Radio Block connects to the RF Frontend, SPI, GPIO

RFNoC Radio

Block
RFNoC Block

User Application – GNU Radio

USRP Hardware Driver (UHD)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

21

RFNoC Block

� NoC Core connects RFNoC Blocks to each other and

I/O interfaces (e.g. Ethernet, PCIe, etc.)

� Supports both full crossbar connections and static routing

� Trade off lower resource utilization and latency for flexibility

� Autogenerated based on RFNoC Block topology

RFNoC Radio

Block
RFNoC Block

User Application – GNU Radio

USRP Hardware Driver (UHD)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

22

RFNoC Block

� FPGA connection back to the host

� External connection: 1 GigE, 10 GigE, PCIe, Aurora

� Internal connection: AXI4 DMA to Zynq ARM processor (e.g. N310)

� Parallel interfaces (e.g. X310 has 2 x 10 GigE)

� Connected to NoC Core, but not a RFNoC Block

� Transparent protocol conversion

RFNoC Radio

Block
RFNoC Block

User Application – GNU Radio

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

USRP Hardware Driver (UHD)

RFNoC Radio

Block

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

23

RFNoC BlockRFNoC Block

� Software API to:

� Configure USRP hardware & RFNoC FPGA infrastructure

� Provide user sample data (r/w buffers) & control (r/w regs) interfaces

� Many other functions too (timed commands, external ref select, etc.)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

USRP Hardware Driver (UHD)

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

24

RFNoC Block
RFNoC Radio

Block
RFNoC Block

User Application – GNU Radio

� User application

� Standalone: C, C++, Python

� Framework: GNU Radio

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

USRP Hardware Driver (UHD)

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

25

RFNoC Block

� Example: Plotting Frequency Spectrum

RFNoC Radio

Block
RFNoC Block

User Application – GNU Radio

USRP Hardware Driver (UHD)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

26

RFNoC Block

� RFNoC RX Radio in GNU Radio represents the

RFNoC Radio block

� RFNoC Radio Block has two GNU Radio blocks

� RX: RFNoC RX Radio, TX: RFNoC TX Radio

RFNoC Block
RFNoC Radio

Block

User Application – GNU Radio

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

USRP Hardware Driver (UHD)

RFNoC Radio

Block

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

27

RFNoC BlockRFNoC Block

User Application – GNU Radio

USRP Hardware Driver (UHD)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

28

RFNoC Block

� Profiling reveals FFT is a hotspot

RFNoC Block
RFNoC Radio

Block

User Application – GNU Radio

USRP Hardware Driver (UHD)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

29

RFNoC Block

� Replace software FFT with FPGA

accelerated FFT using RFNoC

User Application – GNU Radio

RFNoC Radio

Block

RFNoC FFT

Block

RFNoC FFT

Block

RFNoC Architecture

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

30

RFNoC Block

User Application – GNU Radio

RFNoC Radio

Block

NoC Core

Ethernet MAC & PHY

USRP Hardware Driver (UHD)

RFNoC FFT

Block

RFNoC Architecture

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

31

RFNoC Block

User Application – GNU Radio

RFNoC Radio

Block

NoC Core

Ethernet MAC & PHY

USRP Hardware Driver (UHD)

� Radio Core -> FFT route
could be made static

RFNoC FFT

Block

USRP Hardware Driver (UHD)

RFNoC Architecture

NoC Core

Ethernet MAC & PHY

U
S

R
P

 F
P

G
A

H
O

S
T

 P
C

32

RFNoC Block

User Application – GNU Radio

RFNoC Radio

Block

� Profile again and decide if more FPGA

acceleration is needed

RFNoC Block Overview

NoC Core

RFNoC FFT

FIFO FIFO

Packetizer

Xilinx FFT IP

RFNoC Radio

Depacketizer

FIFO FIFO

RX Interface

To Host PC

TX Interface

DepacketizerPacketizer

AXI-Stream

33

RX Sample Data

� Block to block communication:

� FIFO to FIFO, packetized, flow control (unless static route)

� Transparent to user – built into RFNoC infrastructure

RFNoC Block Overview

NoC Core

RFNoC FFT

FIFO FIFO

Packetizer

Xilinx FFT IP

RFNoC Radio

Depacketizer

FIFO FIFO

AXI-Stream

RX Sample Data

To Host PC

DepacketizerPacketizer

RX InterfaceTX Interface

34

RFNoC Block Overview

NoC Core

RFNoC FFT

FIFO FIFO

Packetizer

Xilinx FFT IP

RFNoC Radio

Depacketizer

FIFO FIFO

To Host PC

DepacketizerPacketizer

RX Sample Data

AXI-Stream

RX InterfaceTX Interface

35

� User interfaces to RFNoC via AXI-Stream

� Industry standard (ARM), easy to use

� Large library of existing IP cores

RFNoC Block Overview

NoC Core

RFNoC FFT

FIFO FIFO

Packetizer

Xilinx FFT IP

RFNoC Radio

Depacketizer

FIFO FIFO

To Host PC

DepacketizerPacketizer

RX Sample Data

AXI-Stream

RX InterfaceTX Interface

36

� User writes their own custom HDL or drops in IP

� VHDL, Verilog, SystemVerilog, Vivado HLS

� Xilinx IP, Vivado Block Diagram

RFNoC Block Overview

NoC Core

RFNoC FFT

FIFO FIFO

Packetizer

Xilinx FFT IP

RFNoC Radio

Depacketizer

FIFO FIFO

RX Interface

To Host PC

TX Interface

DepacketizerPacketizer

37

RX Sample Data

AXI-Stream

� Each block is in their own clock domain

� Improves throughput

� Easier timing closure

RFNoC FFT

Block

(Xilinx IP)

NoC Core

Ethernet MAC & PHY

Cognitive Radio

RFNoC Radio

Block

RX Samples

38

Spectrum

Policy

(Soft Processor)

TX

Modulator

(Vivado HLS)

RFNoC FFT

Block

(Xilinx IP)

NoC Core

Ethernet MAC & PHY

Cognitive Radio

RFNoC Radio

Block

RX Samples RX Spectrum

39

Spectrum

Policy

(Soft Processor)

TX

Modulator

(Vivado HLS)

RFNoC FFT

Block

(Xilinx IP)

NoC Core

Ethernet MAC & PHY

Cognitive Radio

RFNoC Radio

Block

RX Samples RX Spectrum

40

Spectrum

Policy

(Soft Processor)

TX

Modulator

(Vivado HLS)

Trigger Command

RFNoC FFT

Block

(Xilinx IP)

NoC Core

Ethernet MAC & PHY

Cognitive Radio

RFNoC Radio

Block

RX Samples RX Spectrum

41

Spectrum

Policy

(Soft Processor)

TX

Modulator

(Vivado HLS)

Trigger Command

Payload from Host

RFNoC FFT

Block

(Xilinx IP)

NoC Core

Ethernet MAC & PHY

Cognitive Radio

RFNoC Radio

Block

RX Samples RX Spectrum

42

Spectrum

Policy

(Soft Processor)

TX

Modulator

(Vivado HLS)

Trigger Command

Payload from Host

TX Samples

� Make FPGA acceleration more accessible on USRPs

� Tightly integrated with GNU Radio

� Library of existing RFNoC Blocks

� FFT, FIR, Signal Generator, Fosphor

� Portable between all third generation USRPs

� X3x0, E3xx, N3xx

� Completely open source

� kb.ettus.com/RFNoC_Getting_Started_Guides

� Next: FPGA & Software Development

Summary

43

� Better Documentation

� Spec: http://files.ettus.com/app_notes/RFNoC_Specification.pdf

� Software Enhancements

� Stability and Testing

� Python support for RFNoC

� FPGA Improvements

� Scalable to faster sampling rates (250 MSPS+)

� Instantiate far more RFNoC Blocks

� Static routing between RFNoC blocks

� Trade off latency and resource utilization versus flexibility

� GNU Radio 3.8 Support

44

What’s New in RFNoC 4

� Fosphor is a real-time GPU-accelerated or

FPGA-accelerated spectrum display tool

� Running on a USRP X310 with a

WBX daughterboard

� The system is running Ubuntu 20.04 with

GNU Radio 3.8.2.0

� All calculations for the FFT and waterfall are

being done on the FPGA, not on the CPU

� The CPU is minimally loaded, even for large

bandwidths

45

RFNoC 4 Demo - Fosphor

