
RFNoC™ Deep Dive: FPGA Side
Jonathon Pendlum

5/28/2014

 Getting started with RFNoC – FPGA

 Anatomy of a Computation Engine

 FFT RFNoC Block walkthrough

 Design Tips

Outline

 Hardware:
 PC or Laptop, decent amount of RAM (4+ GB)
 USRP X300, X310, or E310
 Xilinx JTAG debugger module (optional)

 Only needed for E310, X3x0 series has
built in USB JTAG

 Software:
 Linux based OS
 Xilinx Vivado 2014.4

 E310 can use free Webpack version
 Modelsim (optional)
 UHD
 GNU Radio (optional, but highly recommended)

 gr-ettus

Hardware / Software Prerequisites

 usrp3 -- Third gen devices (X300, E310, B200)
 tools -- Build infrastructure software
 sim -- Simulations
 lib -- HDL shared between devices

 ip -- IP cores shared between devices
 rfnoc -- NoC Shell, AXI Wrapper, NoC blocks, basic blocks

 top -- Device specific files & toplevel
 x300

 ip -- Device specific IP cores
 x300.v
 rfnoc_ce_auto_inst_x300.v
 Makefile

FPGA Directory Structure

 Make sure Vivado 2014.4 installed
 Helpful if installed in default directory (in /opt/Xilinx)

 Go to toplevel directory
 usrp3/top/x300, e300

 source setupenv.sh
 Sets up Xilinx tools

 make X310_HGS_RFNOC (or E310_RFNOC)
 To launch Vivado GUI: make GUI=1 X310_HGS_RFNOC

 Build takes about an hour

Building RFNoC FPGA Images

 Output in build directory
 usrp_x310_fpga_HGS_RFNOC.bit
 Includes a report file with utilization / timing info

 Program bitfile with usrp_x3xx_fpga_burner

 make clean

 make cleanall -- also removes build-ip

Building RFNoC FPGA Images

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

 Packet type based on bits 63, 62, & 60

CHDR Packet Protocol

Pkt
Type

Has
Time Seq # Length (in bytes)

63 - 62 61

EOB SRC SID DST SID

Fractional Time (Optional, Has Time = 1)

60 59 - 48 47 - 32 31 - 16 15 - 0

63 62 60 Packet Type

0 0 0 Data

0 0 1 Data (End of Burst)

0 1 0 Flow Control

1 0 0 Command

1 1 0 Response

1 1 1 Response (Error)

Payload
…

 16 bit Stream ID
 256 unique crossbar (or device) IDs
 16 ports per crossbar
 16 ports per block

 Example Crossbar ID: 2, Port: 1, Block Port: 0
SID: 2.1.0

Stream IDs

SID

Crossbar Crossbar
Port

Block
Port

15 - 8 7 - 4 3 - 0

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

AXI Wrapper

Framer

Deframer

Header
FIFO

1 0

User Provided CHDR Header

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

Simple Mode

Next Destination

AXI Wrapper

Framer

Deframer

Header
FIFO

1 0

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

Simple Mode

User Provided CHDR Header

Next Destination

AXI Wrapper

Framer

Deframer

Header
FIFO

Simple Mode 1 0

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

User Provided CHDR Header

Next Destination

AXI Wrapper

Framer

Deframer

Header
FIFO

Simple Mode 1 0

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

User Provided CHDR Header

Next Destination

AXI Wrapper

Framer

Deframer

Header
FIFO

Simple Mode 1 0

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

User Provided CHDR Header

Next Destination

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

 Settings Bus 8-bit address = 256 regs
 NoC Shell Regs: 0 – 127

 0 – 63: Flow control (4 per block port, x16)
 127: NoC Shell readback address

 NoC Shell Readback Regs:
 0: NoC ID
 1: Window Size

 User Regs: 128 – 255
 128: Next destination (AXI Wrapper, set by software)
 129: Control data (tlast not asserted)
 130: Control data (tlast asserted)
 255: User readback address

Register Space

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

 Many basic functions already written
 All located in usrp3/lib/rfnoc

 AXI-Stream interfaces

 Notable blocks:
 Muliplication: mult, mult_add, cmult, mult_rc
 Add: cadd
 Clipping / Rounding: axi_round, axi_clip
 FIFO: axi_fifo
 Delay: delay, delay_type2, delay_type3
 Utility: split_stream, axi_join, packet_resizer

Basic Building Blocks

 Function:
 FFT, Windowing, FIR, Vector Averaging
 AddSub – Block ports

 Utility:
 Packet resizer, Split stream, Keep one in N, FIFO
 Null source and sink

 In development:
 OFDM receiver & transmitter, Polyphase filter bank
 Radio lite, separate DSP block

Existing RFNoC blocks

 usrp3/lib/rfnoc/noc_block_fft.v

 Based on Xilinx AXI-Stream FFT core

 FFT size 32 – 4096
 Up to 64K

 Configurable output
 Complex, Magnitude, Magnitude Squared

 Built in FFT shift

 No bubble states, i.e. throughput = clock rate

NoC Block FFT Walkthrough

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

 Sets up crossbar and NoC Shell for testbench

 Provides useful tasks such as sending packets

RFNoC Simlib

AXI Crossbar

rfnoc_sim_lib.v
DUT

Computation
Engine

NoC Shell

AXI Wrapper

Testbench

SendAxi
Task

RecvAxi
Task

RFNoC Simlib

AXI Crossbar

rfnoc_sim_lib.v

FFTNoC Shell

AXI Wrapper

Generate sine tones, Check FFT bins

SendAxi
Task

RecvAxi
Task

 How do we add CEs to the build system?
1. Place new CE in usrp3/lib/rfnoc
2. Add block(s) to Makefile.inc
3. Edit rfnoc_auto_ce_inst_x300.v

 Or rfnoc_auto_ce_inst_x310.v, rfnoc_auto_ce_inst_e310.v

4. Run make X300_HGS_RFNOC
1. Or X310_HGS_RFNOC, E310_RFNOC

Adding Computation Engines

 Avoid bubble cycles to improve throughput

 When splitting an AXI stream, use FIFOs
(i.e. split_stream_fifo.v)
 Prevents back up in one stream from blocking another
 May need to adjust FIFO depth

 When combining streams, make sure to account
for different path latency
 Inserting a FIFO on the shorter path can prevent

bubble cycles (waiting for data to “catch up”)
 Manual intervention, best done in simulation

RFNoC FPGA Design Tips

 Be mindful of dead lock situations
 Mostly avoided by carefully following

“do not deassert tvalid without tready” rule

 Watch out for tready, tvalid combinatorial paths
 Subtle source of timing issues

(when chaining multiple blocks)
 Consider inserting register: axi_fifo.v SIZE=0

 Ignore output without a tvalid (when debugging)

 Crossbar statistics tool:
firmware/usrp3/x300/x300_debug.py

RFNoC FPGA Design Tips

Appendix

 Fine and course grained flow control

 Fine grained: AXI-Stream

 Course grained: Credit based flow control
 Every endpoint (or consumer) has a receive window
 Every source (or producer) knows window size
 Producers send packets until consumer window is full
 Consumer notifies (acks) producer as window empties

 i.e. gives credits back to producer

 Some similarities to TCP flow control

Flow Control

 A few additional design rules
1. One consumer per producer

 Otherwise very difficult to keep track of window
 Use block ports to allow a CE to receive multiple streams

2. Producers must buffer entire packet before releasing
 Prevents deadlock in crossbar
 Prevents slow packets from causing congestion

3. All routing based on first line of CHDR header
 Higher performance

4. Samples / data always dropped at producer
 Deterministic -- ensures no lost packets in the middle
 Single point to restart stream

Flow Control Cont.

 Part of ARM AMBA standard

 Simple handshake protocol:
 Upstream block asserts tvalid
 Downstream block asserts tready
 Data is consumed when tvalid & tready == 1
 tlast used to delimit packets

 Once tvalid is asserted, it cannot be deasserted
without at least one tready cycle

 Why is AXI Stream so useful?
 No need for complicated strobes – data flows through

AXI Stream

 Common bus in USRP FPGA designs

 Implements control & status registers

 set_addr, set_data, set_stb, rb_data
 Why no rb_addr? It is a control register

 Control packet payload sets addr & data
 [63:0] = {24’d0, set_addr[7:0], set_data[31:0]}

 Response packet payload has readback data
 All control packets receive a response packet
 Usually write readback address control register to

read a status register

Settings Bus

 CEs support up to 16 block ports
 Allows CEs to accept multiple streams

 Time share a function (i.e. FFT)
 Use data from multiple sources (i.e. addsub block)

 Each block port has dedicated NoC shell output
 Sample data packets only (str_src_t*, str_sink_t*)

 Bit width widened to 64*N where N = number of block ports
 Individual sample data FIFOs for each block port

 Command packets share interface (cmdout_t*, ackin_t*)
 Resource utilization can increase quickly

 Shared input bus
 Does not allow receiving two packets simultaneously

Block Ports

Demo

Generating IP with Vivado

 Find *.xci file in build directory
 Example: build-E310/project_1/project_1.srcs/sources_1/

ip/xfft_0/xfft_0.xci

 Make IP specific directory in usrp3/lib/ip and add
*.xci file
 Example: usrp3/lib/ip/xfft_0/xfft_0.xci

 Edit usrp3/lib/ip/Makefile.inc
 Add IP specific Makefile.inc in IP subdirectory

 Use existing Makefile.inc as template
 Example: usrp3/lib/ip/xfft_0/Makefile.inc

 Note: We are likely to change this approach to make
adding “OOT” RFNoC modules easier

Adding IP cores

 Modelsim simulation infrastructure
 Tested with ModelSim SE on Linux

 Makefile based – easy to add new testbenches

 Example testbenches in usrp3/lib/rfnoc
 rfnoc_fir_filter_tb
 rfnoc_fft_vector_iir_tb

 Note: Big changes coming soon
 More generic infrastructure
 Support for Vivado simulator

Simulating our Custom Block

 Vivado ILA: Integrated Logic Analyzer
 Real time logic analyzer inserted into design
 Integrated into Vivado GUI
 Uses logic resources (Slices, BRAM)

 Multiple ways to instantiate, see Xilinx docs
 Easiest to mark nets & registers for debug in HDL

 Verilog:
(* keep = “true”, dont_touch = “true”, mark_debug = “true” *) wire a;
(* keep = “true”, dont_touch = “true”, mark_debug = “true” *) reg b;

 VHDL:
ATTRIBUTE MARK_DEBUG : string;
ATTRIBUTE MARK_DEBUG of a : SIGNAL IS "TRUE";
…

In system debugging

