
RFNoC™ Deep Dive: FPGA Side
Jonathon Pendlum

5/28/2014

 Getting started with RFNoC – FPGA

 Anatomy of a Computation Engine

 FFT RFNoC Block walkthrough

 Design Tips

Outline

 Hardware:
 PC or Laptop, decent amount of RAM (4+ GB)
 USRP X300, X310, or E310
 Xilinx JTAG debugger module (optional)

 Only needed for E310, X3x0 series has
built in USB JTAG

 Software:
 Linux based OS
 Xilinx Vivado 2014.4

 E310 can use free Webpack version
 Modelsim (optional)
 UHD
 GNU Radio (optional, but highly recommended)

 gr-ettus

Hardware / Software Prerequisites

 usrp3 -- Third gen devices (X300, E310, B200)
 tools -- Build infrastructure software
 sim -- Simulations
 lib -- HDL shared between devices

 ip -- IP cores shared between devices
 rfnoc -- NoC Shell, AXI Wrapper, NoC blocks, basic blocks

 top -- Device specific files & toplevel
 x300

 ip -- Device specific IP cores
 x300.v
 rfnoc_ce_auto_inst_x300.v
 Makefile

FPGA Directory Structure

 Make sure Vivado 2014.4 installed
 Helpful if installed in default directory (in /opt/Xilinx)

 Go to toplevel directory
 usrp3/top/x300, e300

 source setupenv.sh
 Sets up Xilinx tools

 make X310_HGS_RFNOC (or E310_RFNOC)
 To launch Vivado GUI: make GUI=1 X310_HGS_RFNOC

 Build takes about an hour

Building RFNoC FPGA Images

 Output in build directory
 usrp_x310_fpga_HGS_RFNOC.bit
 Includes a report file with utilization / timing info

 Program bitfile with usrp_x3xx_fpga_burner

 make clean

 make cleanall -- also removes build-ip

Building RFNoC FPGA Images

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

 Packet type based on bits 63, 62, & 60

CHDR Packet Protocol

Pkt
Type

Has
Time Seq # Length (in bytes)

63 - 62 61

EOB SRC SID DST SID

Fractional Time (Optional, Has Time = 1)

60 59 - 48 47 - 32 31 - 16 15 - 0

63 62 60 Packet Type

0 0 0 Data

0 0 1 Data (End of Burst)

0 1 0 Flow Control

1 0 0 Command

1 1 0 Response

1 1 1 Response (Error)

Payload
…

 16 bit Stream ID
 256 unique crossbar (or device) IDs
 16 ports per crossbar
 16 ports per block

 Example Crossbar ID: 2, Port: 1, Block Port: 0
SID: 2.1.0

Stream IDs

SID

Crossbar Crossbar
Port

Block
Port

15 - 8 7 - 4 3 - 0

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

NoC Shell

Clock
Crossing

FIFO

Clock
Crossing

FIFO

Crossbar
Clock Domain

Computation Engine
Clock Domain

From
Crossbar

To
Crossbar

De
m

ux
M

ux

FIFO
Data To User

Response

Command

Flow Control

Command
Processor

Settings
Bus

Data

Response

Command

Flow Control

From User
Source Flow Control

Flow Control Responder
Observe

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

AXI Wrapper

Framer

Deframer

Header
FIFO

1 0

User Provided CHDR Header

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

Simple Mode

Next Destination

AXI Wrapper

Framer

Deframer

Header
FIFO

1 0

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

Simple Mode

User Provided CHDR Header

Next Destination

AXI Wrapper

Framer

Deframer

Header
FIFO

Simple Mode 1 0

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

User Provided CHDR Header

Next Destination

AXI Wrapper

Framer

Deframer

Header
FIFO

Simple Mode 1 0

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

User Provided CHDR Header

Next Destination

AXI Wrapper

Framer

Deframer

Header
FIFO

Simple Mode 1 0

CHDR AXI-Stream Settings Bus

From NoC Shell

To NoC Shell

To User IP

From User IP
FIFO

Control FIFO
Sample Data

Control Data

Addr == 129 or 130?

Sample Data

Write Enable

User Provided CHDR Header

Next Destination

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

 Settings Bus 8-bit address = 256 regs
 NoC Shell Regs: 0 – 127

 0 – 63: Flow control (4 per block port, x16)
 127: NoC Shell readback address

 NoC Shell Readback Regs:
 0: NoC ID
 1: Window Size

 User Regs: 128 – 255
 128: Next destination (AXI Wrapper, set by software)
 129: Control data (tlast not asserted)
 130: Control data (tlast asserted)
 255: User readback address

Register Space

Anatomy of a Computation Engine

noc_block_*.v

AXI Crossbar

CHDR

Control Data

AXI-Stream Settings Bus

User IP

NoC Shell

Sample Data

AXI Wrapper

User Registers

Data PacketsCommand &
Response
Packets

NoC ID

 Many basic functions already written
 All located in usrp3/lib/rfnoc

 AXI-Stream interfaces

 Notable blocks:
 Muliplication: mult, mult_add, cmult, mult_rc
 Add: cadd
 Clipping / Rounding: axi_round, axi_clip
 FIFO: axi_fifo
 Delay: delay, delay_type2, delay_type3
 Utility: split_stream, axi_join, packet_resizer

Basic Building Blocks

 Function:
 FFT, Windowing, FIR, Vector Averaging
 AddSub – Block ports

 Utility:
 Packet resizer, Split stream, Keep one in N, FIFO
 Null source and sink

 In development:
 OFDM receiver & transmitter, Polyphase filter bank
 Radio lite, separate DSP block

Existing RFNoC blocks

 usrp3/lib/rfnoc/noc_block_fft.v

 Based on Xilinx AXI-Stream FFT core

 FFT size 32 – 4096
 Up to 64K

 Configurable output
 Complex, Magnitude, Magnitude Squared

 Built in FFT shift

 No bubble states, i.e. throughput = clock rate

NoC Block FFT Walkthrough

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

NoC Block FFT

noc_block_fft.v

CHDR AXI-Stream Settings Bus

NoC Shell

Xilinx FFT
IP Core

FFT
Shift |x|

|x|2

AXI Wrapper

SR 131: FFT Reset

SR 255: Rb Addr

Sample
Data

FFT
Config

SR 132: FFT Size
SR 133: Mag Out

RB 0: FFT Reset
RB 1: Mag Out

Data PacketsCommand & Response
Packets

NoC ID: 0xFF70

 Sets up crossbar and NoC Shell for testbench

 Provides useful tasks such as sending packets

RFNoC Simlib

AXI Crossbar

rfnoc_sim_lib.v
DUT

Computation
Engine

NoC Shell

AXI Wrapper

Testbench

SendAxi
Task

RecvAxi
Task

RFNoC Simlib

AXI Crossbar

rfnoc_sim_lib.v

FFTNoC Shell

AXI Wrapper

Generate sine tones, Check FFT bins

SendAxi
Task

RecvAxi
Task

 How do we add CEs to the build system?
1. Place new CE in usrp3/lib/rfnoc
2. Add block(s) to Makefile.inc
3. Edit rfnoc_auto_ce_inst_x300.v

 Or rfnoc_auto_ce_inst_x310.v, rfnoc_auto_ce_inst_e310.v

4. Run make X300_HGS_RFNOC
1. Or X310_HGS_RFNOC, E310_RFNOC

Adding Computation Engines

 Avoid bubble cycles to improve throughput

 When splitting an AXI stream, use FIFOs
(i.e. split_stream_fifo.v)
 Prevents back up in one stream from blocking another
 May need to adjust FIFO depth

 When combining streams, make sure to account
for different path latency
 Inserting a FIFO on the shorter path can prevent

bubble cycles (waiting for data to “catch up”)
 Manual intervention, best done in simulation

RFNoC FPGA Design Tips

 Be mindful of dead lock situations
 Mostly avoided by carefully following

“do not deassert tvalid without tready” rule

 Watch out for tready, tvalid combinatorial paths
 Subtle source of timing issues

(when chaining multiple blocks)
 Consider inserting register: axi_fifo.v SIZE=0

 Ignore output without a tvalid (when debugging)

 Crossbar statistics tool:
firmware/usrp3/x300/x300_debug.py

RFNoC FPGA Design Tips

Appendix

 Fine and course grained flow control

 Fine grained: AXI-Stream

 Course grained: Credit based flow control
 Every endpoint (or consumer) has a receive window
 Every source (or producer) knows window size
 Producers send packets until consumer window is full
 Consumer notifies (acks) producer as window empties

 i.e. gives credits back to producer

 Some similarities to TCP flow control

Flow Control

 A few additional design rules
1. One consumer per producer

 Otherwise very difficult to keep track of window
 Use block ports to allow a CE to receive multiple streams

2. Producers must buffer entire packet before releasing
 Prevents deadlock in crossbar
 Prevents slow packets from causing congestion

3. All routing based on first line of CHDR header
 Higher performance

4. Samples / data always dropped at producer
 Deterministic -- ensures no lost packets in the middle
 Single point to restart stream

Flow Control Cont.

 Part of ARM AMBA standard

 Simple handshake protocol:
 Upstream block asserts tvalid
 Downstream block asserts tready
 Data is consumed when tvalid & tready == 1
 tlast used to delimit packets

 Once tvalid is asserted, it cannot be deasserted
without at least one tready cycle

 Why is AXI Stream so useful?
 No need for complicated strobes – data flows through

AXI Stream

 Common bus in USRP FPGA designs

 Implements control & status registers

 set_addr, set_data, set_stb, rb_data
 Why no rb_addr? It is a control register

 Control packet payload sets addr & data
 [63:0] = {24’d0, set_addr[7:0], set_data[31:0]}

 Response packet payload has readback data
 All control packets receive a response packet
 Usually write readback address control register to

read a status register

Settings Bus

 CEs support up to 16 block ports
 Allows CEs to accept multiple streams

 Time share a function (i.e. FFT)
 Use data from multiple sources (i.e. addsub block)

 Each block port has dedicated NoC shell output
 Sample data packets only (str_src_t*, str_sink_t*)

 Bit width widened to 64*N where N = number of block ports
 Individual sample data FIFOs for each block port

 Command packets share interface (cmdout_t*, ackin_t*)
 Resource utilization can increase quickly

 Shared input bus
 Does not allow receiving two packets simultaneously

Block Ports

Demo

Generating IP with Vivado

 Find *.xci file in build directory
 Example: build-E310/project_1/project_1.srcs/sources_1/

ip/xfft_0/xfft_0.xci

 Make IP specific directory in usrp3/lib/ip and add
*.xci file
 Example: usrp3/lib/ip/xfft_0/xfft_0.xci

 Edit usrp3/lib/ip/Makefile.inc
 Add IP specific Makefile.inc in IP subdirectory

 Use existing Makefile.inc as template
 Example: usrp3/lib/ip/xfft_0/Makefile.inc

 Note: We are likely to change this approach to make
adding “OOT” RFNoC modules easier

Adding IP cores

 Modelsim simulation infrastructure
 Tested with ModelSim SE on Linux

 Makefile based – easy to add new testbenches

 Example testbenches in usrp3/lib/rfnoc
 rfnoc_fir_filter_tb
 rfnoc_fft_vector_iir_tb

 Note: Big changes coming soon
 More generic infrastructure
 Support for Vivado simulator

Simulating our Custom Block

 Vivado ILA: Integrated Logic Analyzer
 Real time logic analyzer inserted into design
 Integrated into Vivado GUI
 Uses logic resources (Slices, BRAM)

 Multiple ways to instantiate, see Xilinx docs
 Easiest to mark nets & registers for debug in HDL

 Verilog:
(* keep = “true”, dont_touch = “true”, mark_debug = “true” *) wire a;
(* keep = “true”, dont_touch = “true”, mark_debug = “true” *) reg b;

 VHDL:
ATTRIBUTE MARK_DEBUG : string;
ATTRIBUTE MARK_DEBUG of a : SIGNAL IS "TRUE";
…

In system debugging

