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 Anatomy of a Computation Engine

 FFT RFNoC Block walkthrough

 Design Tips
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 Hardware:
 PC or Laptop, decent amount of RAM (4+ GB)
 USRP X300, X310, or E310
 Xilinx JTAG debugger module (optional)

 Only needed for E310, X3x0 series has 
built in USB JTAG

 Software:
 Linux based OS
 Xilinx Vivado 2014.4

 E310 can use free Webpack version
 Modelsim (optional)
 UHD
 GNU Radio (optional, but highly recommended)

 gr-ettus

Hardware / Software Prerequisites



 usrp3 -- Third gen devices (X300, E310, B200)
 tools -- Build infrastructure software
 sim -- Simulations
 lib -- HDL shared between devices

 ip -- IP cores shared between devices
 rfnoc -- NoC Shell, AXI Wrapper, NoC blocks, basic blocks

 top -- Device specific files & toplevel
 x300

 ip -- Device specific IP cores
 x300.v
 rfnoc_ce_auto_inst_x300.v
 Makefile

FPGA Directory Structure



 Make sure Vivado 2014.4 installed
 Helpful if installed in default directory (in /opt/Xilinx)

 Go to toplevel directory
 usrp3/top/x300, e300

 source setupenv.sh
 Sets up Xilinx tools

 make X310_HGS_RFNOC (or E310_RFNOC)
 To launch Vivado GUI: make GUI=1 X310_HGS_RFNOC

 Build takes about an hour

Building RFNoC FPGA Images



 Output in build directory
 usrp_x310_fpga_HGS_RFNOC.bit
 Includes a report file with utilization / timing info

 Program bitfile with usrp_x3xx_fpga_burner

 make clean

 make cleanall -- also removes build-ip

Building RFNoC FPGA Images
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 Packet type based on bits 63, 62, & 60

CHDR Packet Protocol

Pkt
Type

Has 
Time Seq # Length (in bytes)

63 - 62 61

EOB SRC SID DST SID

Fractional Time (Optional, Has Time = 1)

60 59 - 48 47 - 32 31 - 16 15 - 0

63 62 60 Packet Type

0 0 0 Data

0 0 1 Data (End of Burst)

0 1 0 Flow Control

1 0 0 Command

1 1 0 Response

1 1 1 Response (Error)

Payload
…



 16 bit Stream ID
 256 unique crossbar (or device) IDs
 16 ports per crossbar
 16 ports per block

 Example Crossbar ID: 2, Port: 1, Block Port: 0
SID: 2.1.0

Stream IDs

SID

Crossbar Crossbar
Port

Block
Port

15 - 8 7 - 4 3 - 0
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 Settings Bus 8-bit address = 256 regs
 NoC Shell Regs: 0 – 127

 0 – 63: Flow control (4 per block port, x16)
 127: NoC Shell readback address

 NoC Shell Readback Regs:
 0: NoC ID
 1: Window Size

 User Regs: 128 – 255
 128: Next destination (AXI Wrapper, set by software)
 129: Control data (tlast not asserted)
 130: Control data (tlast asserted)
 255: User readback address

Register Space
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 Many basic functions already written
 All located in usrp3/lib/rfnoc

 AXI-Stream interfaces

 Notable blocks:
 Muliplication: mult, mult_add, cmult, mult_rc
 Add: cadd
 Clipping / Rounding: axi_round, axi_clip
 FIFO: axi_fifo
 Delay: delay, delay_type2, delay_type3
 Utility: split_stream, axi_join, packet_resizer

Basic Building Blocks



 Function: 
 FFT, Windowing, FIR, Vector Averaging
 AddSub – Block ports

 Utility:
 Packet resizer, Split stream, Keep one in N, FIFO
 Null source and sink

 In development:
 OFDM receiver & transmitter, Polyphase filter bank
 Radio lite, separate DSP block

Existing RFNoC blocks



 usrp3/lib/rfnoc/noc_block_fft.v

 Based on Xilinx AXI-Stream FFT core

 FFT size 32 – 4096
 Up to 64K

 Configurable output
 Complex, Magnitude, Magnitude Squared

 Built in FFT shift

 No bubble states, i.e. throughput = clock rate

NoC Block FFT Walkthrough
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 Sets up crossbar and NoC Shell for testbench

 Provides useful tasks such as sending packets

RFNoC Simlib

AXI Crossbar

rfnoc_sim_lib.v
DUT

Computation
Engine

NoC Shell

AXI Wrapper

Testbench

SendAxi
Task

RecvAxi
Task



RFNoC Simlib

AXI Crossbar

rfnoc_sim_lib.v

FFTNoC Shell

AXI Wrapper

Generate sine tones, Check FFT bins

SendAxi
Task

RecvAxi
Task



 How do we add CEs to the build system?
1. Place new CE in usrp3/lib/rfnoc
2. Add block(s) to Makefile.inc
3. Edit rfnoc_auto_ce_inst_x300.v

 Or rfnoc_auto_ce_inst_x310.v, rfnoc_auto_ce_inst_e310.v

4. Run make X300_HGS_RFNOC
1. Or X310_HGS_RFNOC, E310_RFNOC

Adding Computation Engines



 Avoid bubble cycles to improve throughput

 When splitting an AXI stream, use FIFOs 
(i.e. split_stream_fifo.v)
 Prevents back up in one stream from blocking another
 May need to adjust FIFO depth

 When combining streams, make sure to account 
for different path latency
 Inserting a FIFO on the shorter path can prevent 

bubble  cycles  (waiting  for  data  to  “catch  up”)
 Manual intervention, best done in simulation

RFNoC FPGA Design Tips



 Be mindful of dead lock situations
 Mostly avoided by carefully following 

“do  not  deassert tvalid without tready”  rule

 Watch out for tready, tvalid combinatorial paths
 Subtle source of timing issues 

(when chaining multiple blocks)
 Consider inserting register: axi_fifo.v SIZE=0

 Ignore output without a tvalid (when debugging)

 Crossbar statistics tool: 
firmware/usrp3/x300/x300_debug.py

RFNoC FPGA Design Tips



Appendix



 Fine and course grained flow control

 Fine grained: AXI-Stream

 Course grained: Credit based flow control
 Every endpoint (or consumer) has a receive window
 Every source (or producer) knows window size
 Producers send packets until consumer window is full
 Consumer notifies (acks) producer as window empties

 i.e. gives credits back to producer

 Some similarities to TCP flow control

Flow Control



 A few additional design rules
1. One consumer per producer

 Otherwise very difficult to keep track of window 
 Use block ports to allow a CE to receive multiple streams

2. Producers must buffer entire packet before releasing
 Prevents deadlock in crossbar
 Prevents slow packets from causing congestion

3. All routing based on first line of CHDR header
 Higher performance

4. Samples / data always dropped at producer
 Deterministic -- ensures no lost packets in the middle
 Single point to restart stream

Flow Control Cont.



 Part of ARM AMBA standard

 Simple handshake protocol:
 Upstream block asserts tvalid
 Downstream block asserts tready
 Data is consumed when tvalid & tready == 1
 tlast used to delimit packets

 Once tvalid is asserted, it cannot be deasserted
without at least one tready cycle

 Why is AXI Stream so useful?
 No need for complicated strobes – data flows through

AXI Stream



 Common bus in USRP FPGA designs

 Implements control & status registers

 set_addr, set_data, set_stb, rb_data
 Why no rb_addr? It is a control register

 Control packet payload sets addr & data
 [63:0]  =  {24’d0,  set_addr[7:0], set_data[31:0]}

 Response packet payload has readback data
 All control packets receive a response packet
 Usually write readback address control register to 

read a status register

Settings Bus



 CEs support up to 16 block ports
 Allows CEs to accept multiple streams

 Time share a function (i.e. FFT)
 Use data from multiple sources (i.e. addsub block)

 Each block port has dedicated NoC shell output
 Sample data packets only (str_src_t*, str_sink_t*)

 Bit width widened to 64*N where N = number of block ports
 Individual sample data FIFOs for each block port

 Command packets share interface (cmdout_t*, ackin_t*)
 Resource utilization can increase quickly

 Shared input bus
 Does not allow receiving two packets simultaneously

Block Ports



Demo

Generating IP with Vivado



 Find *.xci file in build directory
 Example: build-E310/project_1/project_1.srcs/sources_1/ 

ip/xfft_0/xfft_0.xci

 Make IP specific directory in usrp3/lib/ip and add 
*.xci file
 Example: usrp3/lib/ip/xfft_0/xfft_0.xci

 Edit usrp3/lib/ip/Makefile.inc
 Add IP specific Makefile.inc in IP subdirectory

 Use existing Makefile.inc as template
 Example: usrp3/lib/ip/xfft_0/Makefile.inc

 Note: We are likely to change this approach to make 
adding  “OOT”  RFNoC modules easier

Adding IP cores



 Modelsim simulation infrastructure
 Tested with ModelSim SE on Linux

 Makefile based – easy to add new testbenches

 Example testbenches in usrp3/lib/rfnoc
 rfnoc_fir_filter_tb
 rfnoc_fft_vector_iir_tb

 Note: Big changes coming soon
 More generic infrastructure
 Support for Vivado simulator

Simulating our Custom Block



 Vivado ILA: Integrated Logic Analyzer
 Real time logic analyzer inserted into design
 Integrated into Vivado GUI
 Uses logic resources (Slices, BRAM)

 Multiple ways to instantiate, see Xilinx docs
 Easiest to mark nets & registers for debug in HDL

 Verilog: 
(*  keep  =  “true”,  dont_touch =  “true”,  mark_debug =  “true”  *)  wire  a;
(*  keep  =  “true”,  dont_touch =  “true”,  mark_debug =  “true”  *)  reg b;

 VHDL:
ATTRIBUTE MARK_DEBUG : string;
ATTRIBUTE MARK_DEBUG of a : SIGNAL IS "TRUE";
…

In system debugging


