

## Contents

- 1 Device Overview
- 2 Key Features
  - ◆ 2.1 N200
  - ◆ 2.2 N210
- 3 Compatible Daughterboards
- 4 RF Specifications
  - ◆ 4.1 RF Performance Data (with WBX)
- 5 Hardware Specifications
  - ◆ 5.1 N200
  - ◆ 5.2 N210
- 6 Physical Specifications
  - ◆ 6.1 Dimensions
  - ◆ 6.2 Weight
  - ◆ 6.3 Drawings
  - ◆ 6.4 CAD/STP Models
    - ◊ 6.4.1 N2xx
    - ◊ 6.4.2 N2xx Enclosure
- 7 Environmental Specifications
  - ◆ 7.1 Operating Temperature Range
  - ◆ 7.2 Operating Humidity Range
- 8 Schematics
  - ◆ 8.1 N200/N210
- 9 Key Component Datasheets
- 10 FPGA
  - ◆ 10.1 N200
  - ◆ 10.2 N210
- 11 Interfaces and Connectivity
  - ◆ 11.1 N200/N210
- 12 Certifications
  - ◆ 12.1 RoHS
  - ◆ 12.2 China RoHS
- 13 Letter of Volatility
- 14 Recovering the N200/N210
- 15 Downloads

The USRP Network Series offers high-bandwidth, high-dynamic range processing capability. The Gigabit Ethernet interface of the USRP Network Series allows high-speed streaming capability up to 50 MS/s in both directions (8-bit samples). These features, combined with plug-and-play MIMO capability make the USRP Network an ideal candidate for software defined radio systems with demanding performance requirements.

- 50 MHz of RF bandwidth with 8 bit samples
- 25 MHz of RF bandwidth with 16 bit samples
- Gigabit Ethernet connectivity
- MIMO capable - requires two or more USRP N200 devices as motherboard has one daughterboard slot (1 RX + 1 TX connectors)
- Onboard FPGA processing
- FPGA: Xilinx® Spartan® 3A-DSP XC3SD1800A
- ADCs: 14-bits 100 MS/s
- DACs: 16-bits 400 MS/s
- Ability to lock to external 5 or 10 MHz clock reference
- TCXO Frequency Reference (~2.5ppm)
- Optional internal GPS locked reference oscillator
- FPGA code can be changed with Xilinx® ISE® WebPACK? tools
- Frequency range: DC - 6 GHz with suitable daughterboard



- 50 MHz of RF bandwidth with 8 bit samples
- 25 MHz of RF bandwidth with 16 bit samples
- Gigabit Ethernet connectivity
- MIMO capable - requires two or more USRP N210 devices as motherboard has one daughterboard slot (1 RX + 1 TX connectors)
- Onboard FPGA processing
- FPGA: Xilinx® Spartan® 3A-DSP XC3SD3400A
- ADCs: 14-bits 100 MS/s
- DACs: 16-bits 400 MS/s
- Ability to lock to external 5 or 10 MHz clock reference
- TCXO Frequency Reference (~2.5ppm)
- Optional internal GPS locked reference oscillator
- FPGA code can only be changed with the paid version of the Xilinx® ISE® Design Suite tools
- Frequency range: DC - 6 GHz with suitable daughterboard
- SBX-40
- UBX-40
- WBX-40
- CBX-40
- LFRX / LFTX



- BasicRX / BasicTX
- DBSRX2 (EOL)
- RFX Series (EOL)
- TVRX2 (EOL)

- SSB/LO Suppression -35/50 dBc
- Phase Noise 1.8 GHz 10kHz -80 dBc/Hz
- Phase Noise 1.8 GHz 100kHz -100 dBc/Hz
- Phase Noise 1.8 GHz 1MHz -137 dBc/Hz
- Power Output 15 dBm
- IIP3 (@ typ NF) 0 dBm
- Typical Noise Figure 5 dB

- Ettus Research recommends to always use the latest stable version of UHD

- Current Hardware Revision: 4
- Minimum version of UHD required: 3.8.0

- Current Hardware Revision: 4
- Minimum version of UHD required: 3.8.0

22 x 16 x 5 cm

1.2 kg

- [File:cu usrp-n2x0 motherboard.pdf](#)
- [File:cu ettus-usrp-n2x0.pdf](#)

- Motherboard

- Enclosure

- N200/N210: 25 °C

- 10% to 90% non-condensing

#### N200/N210 Schematics

| Part Number     | Description                  | Schematic ID (Page) |
|-----------------|------------------------------|---------------------|
| AD9777          | Dual Channel, 16-Bit DAC     | U3 (1)              |
| ADS62P4X        | Dual Channel, 14-Bit ADC     | U2 (1)              |
| XC3SD3400AFG676 | FPGA                         | U1 (2,8,9,10,11,12) |
| AD9510          | Clock Distribution IC        | U9 (4)              |
| ET1011C2        | Gigabit Ethernet Transceiver | U12 (6)             |
| CY7C1354C       | Pipelined SRAM               | U19 (7)             |
| MAX232          | Drivers/Receiver             | U25 (10)            |

- Utilization statistics are subject to change between UHD releases. This information is current as of UHD 3.9.4 and was taken directly from Xilinx Vivado 2014.4.

Device utilization summary:

```
-----
Selected Device : 3sd1800afg676-5

Number of Slices: 18356 out of 16640 110% (*)
Number of Slice Flip Flops: 20466 out of 33280 61%
Number of 4 input LUTs: 32968 out of 33280 99%
  Number used as logic: 28511
  Number used as Shift registers: 3945
  Number used as RAMs: 512
Number of IOs: 338
Number of bonded IOBs: 331 out of 519 63%
  IOB Flip Flops: 342
Number of BRAMs: 41 out of 84 48%
Number of GCLKs: 6 out of 24 25%
Number of DCMS: 1 out of 8 12%
Number of DSP48s: 31 out of 84 36%
```

Device utilization summary:

```
-----  
Selected Device : 3sd3400afg676-5  
  
Number of Slices: 18349 out of 23872 76%  
Number of Slice Flip Flops: 20475 out of 47744 42%  
Number of 4 input LUTs: 32986 out of 47744 69%  
    Number used as logic: 28529  
    Number used as Shift registers: 3945  
    Number used as RAMs: 512  
Number of IOs: 338  
Number of bonded IOBs: 331 out of 469 70%  
    IOB Flip Flops: 342  
Number of BRAMs: 41 out of 126 32%  
Number of GCLKs: 6 out of 24 25%  
Number of DCMs: 1 out of 8 12%  
Number of DSP48s: 31 out of 126 24%
```

- Gigabit Ethernet

As of December 1st, 2010 all Ettus Research products are RoHS compliant unless otherwise noted. More information can be found at <http://ettus.com/legal/rohs-information>

#### **Management Methods for Controlling Pollution Caused by Electronic Information Products Regulation**

##### **Chinese Customers**

National Instruments is in compliance with the Chinese policy on the Restriction of Hazardous Substances (RoHS) used in Electronic Information Products. For more information about the National Instruments China RoHS compliance, visit [ni.com/environment/rohs\\_china](http://ni.com/environment/rohs_china).

Found on the [NI Product Certifications lookup tool here](#).

For a detailed guide to recovering the N200/N210, please see the [N200/N210 Device Recovery](#) application note.

[FPGA Resources](#)

[UHD Stable Binaries](#)

[UHD Source Code on Github](#)