Contents

- 1 Device Overview • 2 Key Features ◆ 2.1 N200
 ◆ 2.2 N210 • 3 Compatible Daughterboards 4 RF Specifications ♦ 4.1 RF Performance Data (with WBX) • 5 Hardware Specifications ◆ 5.1 N200
 ◆ 5.2 N210 6 Physical Specifications
 6.1 Dimensions + 6.2 Weight 6.3 Drawings
 6.4 CAD/STP Models
 6.4.1 N2xx
 6.4.2 N2vx ♦ 6.4.2 N2xx Enclosure 7 Environmental Specifications ◆ 7.1 Operating Temperature Range 7.2 Operating Humidity Range • 8 Schematics ♦ 8.1 N200/N210 • 9 Key Component Datasheets • 10 FPGA ◆ 10.1 N200 10.2 N210

 - 11 Interfaces and Connectivity ♦ 11.1 N200/N210
 - 12 Certifications
 - - ♦ 12.1 RoHS
 ♦ 12.2 China RoHS
 - 13 Letter of Volatility
 - 14 Recovering the N200/N210
 - 15 Downloads

The USRP Network Series offers high-bandwidth, high-dynamic range processing capability. The Gigabit Ethernet interface of the USRP Network Series allows high-speed streaming capability up to 50 MS/s in both directions (8-bit samples). These features, combined with plug-and-play MIMO capability up to 50 MS/s in both directions (8-bit samples). make the USRP Network an ideal candidate for software defined radio systems with demanding performance requirements.

- 50 MHz of RF bandwidth with 8 bit samples
 25 MHz of RF bandwidth with 16 bit samples
- Gigabit Ethernet connectivity
- MIMO capable requires two or more USRP N200 devices as motherboard has one daughterboard slot (1 RX + 1 TX connectors)
- Onboard FPGA processing
 FPGA: Xilinx® Spartan® 3A-DSP XC3SD1800A
- ADCs: 14-bits 100 MS/s
- DACs: 16-bits 400 MS/s
- Ability to lock to external 5 or 10 MHz clock reference
- TCXO Frequency Reference (~2.5pm)
 Optional internal GPS locked reference oscillator
- FPGA code can be changed with Xilinx® ISE® WebPACK? tools
- Frequency range: DC 6 GHz with suitable daughterboard
- 50 MHz of RF bandwidth with 8 bit samples
 25 MHz of RF bandwidth with 16 bit samples
- Gigabit Ethernet connectivity
- MIMO capable requires two or more USRP N210 devices as motherboard has one daughterboard slot (1 RX + 1 TX connectors)
- Onboard FPGA processing
 FPGA: Xilinx® Spartan® 3A-DSP XC3SD3400A
- ADCs: 14-bits 100 MS/s
 DACs: 16-bits 400 MS/s
- Ability to lock to external 5 or 10 MHz clock reference
- TCXO Frequency Reference (~2.5ppm)
 Optional internal GPS locked reference oscillator
- FPGA code can only be changed with the paid version of the Xilinx® ISE® Design Suite tools
- Frequency range: DC 6 GHz with suitable daughterboard
- SBX-40
- UBX-40
- WBX-40
- CBX-40
- LFRX / LFTX

- BasicRX / BasicTX
 DBSRX2 (EOL)
 RFX Series (EOL)
 TVRX2 (EOL)

- SSB/LO Suppression -35/50 dBc
 Phase Noise 1.8 GHz 10kHz -80 dBc/Hz
 Phase Noise 1.8 GHz 100kHz -100 dBc/Hz
 Phase Noise 1.8 GHz 1MHz -137 dBc/Hz

- Power Output 15 dBm
 IIP3 (@ typ NF) 0 dBm
 Typical Noise Figure 5 dB
- Ettus Research recommends to always use the latest stable version of UHD
- Current Hardware Revision: 4
- Minimum version of UHD required: 3.8.0
- Current Hardware Revision: 4
 Minimum version of UHD required: 3.8.0

22 x 16 x 5 cm

1.2 kg

- File:cu usrp-n2x0 motherboard.pdf
- File:cu ettus-usrp-n2x0.pdf
- Motherboard
- Enclosure
- N200/N210: 25 °C
- 10% to 90% non-condensing

N200/N210 Schematics

Part Number	Description	Schematic ID (Page)			
AD9777	Dual Channel, 16-Bit DAC	U3 (1)			
ADS62P4X	Dual Channel, 14-Bit ADC	U2 (1)			
XC3SD3400AFG676	FPGA	U1 (2,8,9,10,11,12)			
AD9510	Clock Distribution IC	U9 (4)			
ET1011C2	Gigabit Ethernet Transceiver	U12 (6)			
CY7C1354C	Pipelined SRAM	U19 (7)			
MAX232	Drivers/Receiver	U25 (10)			

• Utilization statistics are subject to change between UHD releases. This information is current as of UHD 3.9.4 and was taken directly from Xilinx Vivado 2014.4.

Device utilization summary:

Selected Device : 3sd1800afg676-5				
Number of Slices:	18356	out of	16640	110% (*)
Number of Slice Flip Flops:	20466	out of	33280	61%
Number of 4 input LUTs:	32968	out of	33280	99%
Number used as logic:	28511			
Number used as Shift registers:	3945			
Number used as RAMs:	512			
Number of IOs:	338			
Number of bonded IOBs:	331	out of	519	63%
IOB Flip Flops:	342			
Number of BRAMs:	41	out of	84	48%
Number of GCLKs:	6	out of	24	25%
Number of DCMs:	1	out of	8	12%
Number of DSP48s:	31	out of	84	36%

Selected Device : 3sd3400afg676-5

Number of Slices: Number of Slice Flip Flops:	18349 20475			23872 47744	76% 42%
Number of 4 input LUTs:	32986			47744	69%
Number used as logic:	28529	out	01	4//44	09%
Number used as Shift registers:	3945				
Number used as RAMs:	512				
Number of IOs:	338				
Number of bonded IOBs:	331	out	of	469	70%
IOB Flip Flops:	342				
Number of BRAMs:	41	out	of	126	32%
Number of GCLKs:	6	out	of	24	25%
Number of DCMs:	1	out	of	8	12%
Number of DSP48s:	31	out	of	126	24%

Gigabit Ethernet

As of December 1st, 2010 all Ettus Research products are RoHS compliant unless otherwise noted. More information can be found at http://ettus.com/legal/rohs-information

Management Methods for Controlling Pollution Caused by Electronic Information Products Regulation

Chinese Customers

National Instruments is in compliance with the Chinese policy on the Restriction of Hazardous Substances (RoHS) used in Electronic Information Products. For more information about the National Instruments China RoHS compliance, visit ni.com/environment/rohs_china.

Found on the NI Product Certifications lookup tool here.

For a detailed guide to recovering the N200/N210, please see the N200/N210 Device Recovery application note.

FPGA Resources

UHD Stable Binaries

UHD Source Code on Github