RFNoC 4 Migration Guide
Contents

> L 2R 2R 2% 2% 2

SO SO

> o0
SO <S>

L 2R 2R 2

The UHD 4.0 release includes a major upgrade to the RFNoC framework called RFNoC 4. This article is a guide to aid users in migrating their existing
RFNoC blocks from RFNoC 3 to RFNoC 4. The RFNoC Block Development Environment section provides guidance on how to setup an environment for
developing out-of-tree RFNoC blocks in RFNoC 4. The UHD, FPGA, GNU Radio Migration sections provide general information on topics that most
users will encounter when migrating their blocks. Finally, an equivalent RFNoC 3 and RFNoC 4 implementation of a digital gain RFNoC Block has been
provided as a reference.

sudo apt-get install autoconf automake build-essential cmake cpufrequtils doxygen ethtool \
g++ git inetutils-tools libboost-all-dev libusb-1.0-0 libusb-1.0-0-dev libudev-dev \
libspdlog-dev doxygen swig python3-docutils python3-mako python3-numpy python3-requests \
python3-ruamel.yaml python3-setuptools cmake build-essential git g++ libgmp-dev swig \
python3-sphinx python3-1xml doxygen libfftw3-dev libsdll.2-dev libgsl-dev libgwt-gt5-dev \
libgt5opengl5-dev python3-pyqgt5 liblogdcpp5-dev libzmg3-dev python3-yaml python3-click \
python3-click-plugins python3-zmg python3-scipy python3-gi python3-gi-cairo \
girl.2-gtk-3.0 libcodec2-dev libgsml-dev pybindll-dev python3-matplotlib libsndfilel-dev \
python3-jsonschema python3-pygccxml libtinfo5 libncurses5

Please refer to the dependencies section on the in UHD's manual.
Note 1: Make sure to install

Note 2: The dependencies step above includes installing libtinfo5 libncurses5, which is a workaround for getting Vivado 2021.1 to run on Ubuntu 20.04 &
22.04

git clone —-branch UHD-4.6 uhd
mkdir uhd/host/build; cd uhd/host/build

cmake

make

sudo make install

Note: If your design does not use GNU Radio, then installing GNU Radio and gr-ettus is not required

git clone —--branch maint-3.8 —--recursive gnuradio
mkdir gnuradio/build; cd gnuradio/build;

cmake

make

sudo make install

You can also reference the for more detailed information.

git clone —--branch maint-3.8-uhd4.0 gr-ettus
mkdir gr-ettus/build; cd gr-ettus/build;

cmake —-DENABLE_QT=True

make

sudo make install

https://files.ettus.com/manual_archive/v4.6.0.0/html/md_usrp3_build_instructions.html
https://support.xilinx.com/s/article/76780?language=en_US
https://github.com/ettusresearch/uhd.git
https://github.com/gnuradio/gnuradio.git
https://wiki.gnuradio.org/index.php/UbuntuInstall
https://github.com/ettusresearch/gr-ettus.git

Two options exist for developing RFNoC blocks depending on whether the your RFNoC block integrates with GNU Radio in an out-of-tree module or if it
only uses UHD?s C++ APl in a standalone application. The sections below outline how to setup the development environment for each scenario.

The tool rfnocmodtool automates the process of creating GNU Radio out-of-tree (OOT) modules that also have support for RFNoC blocks. This tool is
part of gr-ettus and it has been ported to RFNoC 4.

Due to changes in almost every source file, it is recommended to use rfnocmodtool to generate a new RFNoC block from scratch and then update the
generated ?skeleton? files.

The following steps show how to create an OOT module called example and RFNoC block called gain using rfnocmodtool. The naming is only for
example purposes.

rfnocmodtool newmod
Name of the new module: example

cd rfnoc-tutorial

rfnocmodtool add

Enter name of block/code (without module name prefix): gain

Enter valid argument list, including default arguments: (leave blank)
Add Python QA code? [y/N] N

Add C++ QA code? [y/N] N

Block NoC ID (Hexadecimal): (Enter Noc ID of your block)

Skip Block Controllers Generation? [UHD block ctrl files] [y/N] N
Skip Block interface files Generation? [GRC block ctrl files] [y/N] N

Note: Noc IDs have been reduced from 64-bits in RFNoC 3 to 32-bits in RFNoC 4

The following are the relevant files that need to be updated when migrating your RFNoC Block.

rfnoc-example/

grc/
example_gain.block.yml ? RFNoC Block GNU Radio Companion YAML file
examples/
gain.grc ? Example flowgraph using gain RFNoC Block
include/tutorial/
gain.h ? GNU Radio block C++ header
gain_block_ctrl.hpp ? RFNoC Block Controller C++ header
lib/

[N

GNU Radio block C++ source
GNU Radio block C++ header

gain_impl.cc
gain_impl.h

BN

gain_block_ctrl_impl.cpp ? RFNoC Block Controller C++ source
rfnoc/blocks/

gain.yml ? RFNoC Block Description YAML file
rfnoc/fpga/rfnoc_block_gain

noc_shell_gain.v ? RFNoC Block Noc Shell Verilog Source

rfnoc_block_gain.v ? RFNoC Block Verilog Source

rfnoc_block_gain_tb.v ? RFNoC Block Testbench
rfnoc/icores

gain_x310_rfnoc_image_core.yml ? Image Core YAML file with gain block

cd rfnoc-tutorial

mkdir build; cd build

cmake -DUHD_FPGA_DIR= (path to uhd/fpga directory)
make

sudo make install

CMake automatically creates makefile targets to run the generated testbench code for each added RFNoC block. For example, here is how to run the
gain block testbench:

cd rfnoc-tutorial/build

make rfnoc_block_gain_tb

CMake automatically creates makefile targets to build FPGA images using the generated image core yaml files found in rfnoc/icore. Every RFNoC block
created by rfnocmodtool automatically has an image core yaml file generated in that directory. For example, here is how to build an FPGA image using
the image core yaml file generated for the gain block:

cd rfnoc-tutorial/build

make gain_x310_rfnoc_image_core

For applications that only use the UHD API, an example out-of-tree (UHD source tree) RFNoC block exists called rfnoc-example. It is located in the UHD
source at uhd/host/examples/rfnoc-example. This directory can be copied outside of the UHD source tree and used a starting point to migrate your
RFNoC block.

The following are the relevant files that need to be updated when migrating your RFNoC Block.

rfnoc-example/

apps/

init_gain_block.cpp ? Example C++ application testing gain block
blocks/

gain.yml ? RFNoC Block Description YAML file
fpga/rfnoc_block_gain

noc_shell_gain.v ? RFNoC Block Noc Shell Verilog Source

rfnoc_block_gain.v ? RFNoC Block Verilog Source

rfnoc_block_gain_tb.v ? RFNoC Block Testbench
icores/

x310_rfnoc_image_core.yml ? Example Image Core YAML file
include/rfnoc/example

gain_block_control.hpp ? RFNoC Block Controller C++ header
1lib/

gain_block_control.cpp ? RFNoC Block Controller C++ source

cd rfnoc-example
mkdir build; cd build
cmake

make

sudo make install

CMake automatically creates makefile targets to run RFNoC Block testbench simulations. For every RFNoC block subdirectory listed in the
CMakelists.txt file in the rfnoc-example/fpga directory, a target with the RFNoC block name appended with ?_tb? is added as a makefile target. For
example, here is how to run the gain RFNoC block testbench:

cd rfnoc-example/build
make rfnoc_block_gain_tb

CMake automatically creates makefile targets to build a FPGA image for each image core yaml file listed in the CMakeLists.txt file in the
rfnoc-example/icore directory. Each image core yaml file must be listed in the CMakelLists.txt. For example, here is how to build an FPGA image using
the image core yaml file generated for the gain block:

cd rfnoc-tutorial/build
make gain_x310_rfnoc_image_core

This ZIP archive, , contains equivalent RFNoC 3 and RFNoC 4 versions of a digital gain RFNoC Block. The following sections
will refer to files in this archive to show how the file structure changes when migrating from RFNoC 3 to RFNoC 4.

Migration reference files for this section from the Gain RFNoC Block example:

Description RFNoC 3 Files RFNoC 4 Files

lib/gain_block_ctrl_impl.cpp
include/example/gain_block_ctrl.hpp
lib/gain_block_ctrl_impl.cpp
include/example/gain_block_ctrl.hpp

Note: Files are relative to the rfnoc-example directory in the respective rfnoc3 and rfnoc4 directories

Block Description rfnoc/blocks/gain.xml

Block Controller rfnoc/blocks/gain.yml

RFNoC 3 used Noc Script XML, a domain specific language, to describe the configuration of a RFNoC block: the Noc ID, register names and addresses,
args for writing to the registers, and the input/output ports.

RFNoC 4 replaces the Noc Script XML file with an easier to read and edit Block Description YAML file format. From a high level, the Block Description
YAML file serves a similar function as the Noc Script XML file, with some similarities and key differences outlined in table below:

Item Noc Script XML Block Descript YAML RFNoC 4 Notes
Block Name <name>gain</name> module_name: gain
Noc ID <id>B160000000000000</id> noc_id: 0xBl6 Noc ID are limited to 32-bits
<registers>
<setreg>
. <name>GAIN</name> . . .
Registers <addresss128</addresss N/A Registers must be defined in the Block Controller
</setreg>
</registers>
<args>
<arg>
<name>gain</name> . . .
Arguments <type>int</type> N/A Args are implemented with properties in the Block Controller
</é£§>
</args>
<ports> data:))
<sink> fpga_iface: axis_pyld_ctxt
<name>in</name> clk_domain: rfnoc_chdr
</sink> inputs:
Data Ports in:
<name>out</name> outputs;--
out:
</ports>
control:
sw_iface: nocscript
Control Ports N/A fpga_iface: ctrlport
interface_direction: slave
clocks:
. — name: rfnoc_chdr
Clocking N/A freq: "[]"
— name: rfnoc_ctrl
freq: "[]"

Note: For a more detailed description of the RFNoC 4 Block Description YAML syntax and the various options, see the

Much of the user facing RFNoC software API has not changed or remains very similar between RFNoC 3 and RFNoC 4. The table below outlines some
of the notable differences:

RFNoC 3 RFNoC 4 RFNoC 4 Notes
usrp = uhd::device3::make(...) graph = uhd::rfnoc::rfnoc_graph: :make () No |0nger need to create a device3 ObjeCt
usrp->get_block_ctrl(...) graph->get_block (...) Rename

Used to check static connections, for example the DDC and DUC

N/A graph->enunerate_static_comections() ook are usually statically connected to the radio block
usrp->get_tx_streamer(...) graph->create_tx_streamer(...) Rename
usrp->get_rx_streamer(...) graph->create_rx_streamer(...) Rename

N/A graph->commit () Commit graph and run initial checks
sr_write(...) regs () .poke32(...) Address increments by 4

sr_read32(...) regs () .peek32(...) Address increments by 4

https://kb.ettus.com/File:migration_example.zip
https://files.ettus.com/app_notes/RFNoC_Specification.pdf

sr_read64(...) regs () .poke64 (...) Address increments by 8
set_arg(...) set_property (...) Block args replaced with block properties concept
get_arg(...) get_property (...) Block args replaced with block properties concept

In RFNoC 3, RFNoC blocks can have arguments (also known as args) that are used to write user registers. This is implemented in the Noc Script XML
in the <args> section.

RFNoC 4 expands and generalizes this concept with block properties: a high-level representation of the state of the block. Zero or more properties can
be defined by the user in their RFNoC Block?s Block Controller C++ class. When read or written to, they can trigger a callback to a user defined resolver
function. The provides more details on properties in the ?Block Properties? section.

The following shows an example of how to migrate a RFNoC 3 Noc Script XML ?arg? based register write to a RFNoC 4 property based implementation
in the Block Controller:

<registers>
<setreg>
<name>GAIN</name>
<address>128</address>
</setreg>
</registers>

<args>
<arg>
<name>gain</name>
<type>int</type>
<value>1</value>
<check>GE ($gain, 0) AND LE($gain, 32767)</check>
<check_message>Gain must be in the range [0, 32767]</check_message>
<action>SR_WRITE ("GAIN", S$gain)</action>
</arg>
</args>

// <registers>

// <setreg>

// <name>GAIN</name>

// <address>128</address>
// </setreg>

// </registers>
// Note: In RFNoC 4, register addresses can start at address 0 instead of address 128 as in RFNoC 3.
const uint32_t gain_block_ctrl::REG_GAIN_ADDR

const uint32_t gain_block_ctrl::REG_GAIN_DEFAULT

= 0;
= 1;
class gain_block_ctrl_impl : public gain_block_ctrl
{
public:
RFNOC_BLOCK_CONSTRUCTOR (gain_block_ctrl)
{
_register_props();
}
private:
void _register_props()
{
register_property (& _user_reg, [this] () {
int user_reg = this->_user_reg.get();
// <check>GE ($gain, 0) AND LE ($gain, 32767)</check>
// <check_message>Gain must be in the range [0, 32767]</check_message>
if (user_reg < 0 || user_reg > 32767) {
throw uhd::value_error ("Size value must be in [0,32767]");
}
// <action>SR_WRITE ("GAIN", Sgain)</action>
this->regs () .poke32 (REG_USER_ADDR, user_reg);
1)
}

// <name>gain</name>
// <type>int</type>
// <value>1</value>
property_t<int> _user_reg{"gain", REG_USER_DEFAULT, {res_source_info::USER}};

As the above shows, writing to a register can be replicated with a property and a resolver function. Of course, the resolver function can also be made
much more sophisticated. For additional examples, see the in-tree block controllers in .

Migration reference files for this section from the Gain RFNoC Block example:

Description RFNoC 3 Files RFNoC 4 Files
Block Verilog Code rfnoc/fpga-src/noc_block_gain.v rfnoc/fpga/rfnoc_block_gain/rfnoc_block_gain.v
Block Noc Shell N/A rfnoc/fpga/rfnoc_block_gain/noc_shell_gain.v
Block Testbnech rfnoc/testbench/noc_block_gain/noc_block_gain_tb.sv rfnoc/fpga/rfnoc_block_gain/rfnoc_block_gain_tb.sv
Image Core N/A rfnoc/icores/gain_x310_rfnoc_image_core.yml

Note: Files are relative to the rfnoc-example directory in the respective rfnoc3 and rfnoc4 directories

RFNoC 4 replaces the highly parameterized RFNoC 3 Noc Shell with a per-block customized Noc Shell generated from the block?s Block Description
YAML file. The Noc Shell generated via rfnocmodtool or the existing one in rfnoc-example is acceptable for most blocks that require one input and
output data port.

Some blocks may need multiple data ports or other modifications. This requires editing the Block Description YAML file and then using the Python script
rfnoc_create_verilog.py (found in uhd/host/utils/rfnoc_blocktool) to generate a new Noc Shell instance.
The argument ?-c? is used to provide the YAML file location. ?-d? provides the output destination directory.

Note: It is suggested to not set the destination directory to your existing RFNoC block code, as the script will automatically overwrite the existing code!

https://files.ettus.com/app_notes/RFNoC_Specification.pdf
https://github.com/EttusResearch/uhd/tree/master/host/lib/rfnoc

Example usage:

rfnoc_create_verilog.py -c ./rfnoc-example/rfnoc/blocks/gain.yml -d ./output/

In the generated Noc Shell Verilog code, a block?s Noc ID can be changed by updating the NOC_ID parameter on the backend_iface module. Make
sure this matches the Noc ID in both the Block Description YAML file and Block Controller C++ code.

The RFNoC 3 version of Noc Shell outputs / accepts CHDR data packets consisting of a header, optional timestamp, and payload on a 64-bit AXI
stream bus. Most designs then used a module called AXI Wrapper to handle the conversion between CHDR data packets and sample streams on a
32-bit AXI stream bus. AXI Wrapper also supported SIMPLE_MODE which for some use cases could transparently handle the header portion of the
CHDR data packet. Otherwise, the user would need to set the header via m_axis_data_tuser.

In RFNoC 4, Noc Shell has absorbed AXI Wrapper?s functionality. Noc Shell outputs two AXI stream buses per input / output port: a payload and
context bus. The payload bus is in most cases identical to AXI Wrapper?s output: a 32-bit stream of samples on an AXI| Stream bus with packets
delimited by tlast. The context AXI stream bus carries the header, optional timestamp, and optional metadata. If your block used AXI Wrapper?s
SIMPLE_MODE, then you can loop the context bus back into Noc Shell. If not, you will need to modify the context bus data. Refer to the

for the format and timing diagram of the context bus.

Important Note: If your block used the AXI Rate Change module, Noc Shell has another data port mode to support this use case called axis_data that
can be set in the Block Descriptor YAML file (see the foga_iface entry). This mode causes the Noc Shell data ports to look more like AXI Wrapper?s and
therefore makes them compatible with AXI Rate Change. See the DDC, DUC, or Keep One in N RFNoC Blocks for an example.

CtrlPort replaces the Settings Bus in RFNoC 4. The CtrlPort bus is similar to the Settings Bus with a few key differences. The table below compares the
signaling between the two bus formats and provides notes on any differences. Timing diagrams and additional information on the CtrlPort bus are also
available in the .

Settings '33‘)'3 (RFNoC c4r1port (RFNOC 4) RFNoC 4 Notes
set_stb ctrlport_reg_wr Write strobe
20-bits instead of 8-bits, increments by 4 instead of by 1, no reserved addresses (versus addresses
set_addr ctrlport_req_addr 0-127 for Settings Bus)
set_data ctrlport_req_data Write data
N/A ctrlport_req_rd Read strobe equivalent of ctrlport_req_wr
rb_addr N/A CtrlPort uses ctrlport_req_addr for both read and write addresses
rb_data ctrlport_resp_data Read data, 32-bits instead of 64-bits
rb_stb N/A CtrlPort requires ack strobe for reads and writes

One additional difference when using CtrlPort is that there is not an equivalent Settings Register module. The bus is simple enough to setup a clocked
process to handle reading from and writing to registers. See the Verilog example below:

// Note: Register addresses increment by 4
localparam REG_USER_ADDR ; // Address for example user register
localparam REG_USER_DEFAULT ; // Default value for user register

oo

reg [31:0] reg_user = REG_USER_DEFAULT;

always @ (posedge ctrlport_clk) begin
if (ctrlport_rst) begin
reg_user = REG_USER_DEFAULT;
end else begin
// Default assignment
m_ctrlport_resp_ack <= 0;

// Read user register
if (m_ctrlport_req rd) begin // Read request
case (m_ctrlport_req_addr)

REG_USER_ADDR: begin
m_ctrlport_resp_ack <= 1;
m_ctrlport_resp_data <= reg_user;

end

endcase
end

// Write user register
if (m_ctrlport_req wr) begin // Write requst
case (m_ctrlport_req_addr)
REG_USER_ADDR: begin
m_ctrlport_resp_ack <= 1;
reg_user <= m_ctrlport_req data[31:0];
end
endcase
end
end
end

Important Note: For blocks that make heavy use of the Settings Bus and/or Settings Registers, there is a CtrlPort to Settings Bus bridge available called
ctriport_to_settings_bus. See the Keep One In N RFNoC Block for example code on how to interface with it.

While RFNoC 4 does overhaul the RFNoC 3 testbench infrastructure API, most of the high level concepts remain the same. The table below outlines
some of the commonly used RFNoC 3 functions / code and the RFNoC 4 equivalent.

Operation RFNoC 3 RFNoC 4
RfnocBlockCtrlBfm #(...) blk_ctrl = new(...);
“RFNOC_SIM_INIT(...) blk_ctrl.connect_master_data_port(...)
Setup RFNoC * RENOC_ADD_BLOCK (. . .) blk_ctrl.connect_slave_data_port (...)

"RFNOC_CONNECT (. ..)
Note: Instantiate one Block Controller BFM per RFNoC Block

"TEST_CASE_START (...) test.start_test (...)
Setup Test Cases *TEST_CASE_DONE (. . .) test.end_test ()

https://files.ettus.com/app_notes/RFNoC_Specification.pdf
https://files.ettus.com/app_notes/RFNoC_Specification.pdf
https://files.ettus.com/app_notes/RFNoC_Specification.pdf

Register Read tb_streamer.read_reg(...) blk_ctrl.reg_read(...)

Register Write tb_streamer.write_reg(...) blk_ctrl.reg_write(...)
Sel"ld Da'[a / Samples tb_streamer.send(...) blk_ctrl.send_items (...)
Receive Data / Samples tb_streamer.recv(...) blk_ctrl.recv_items (...)

RFNoC 4 replaces uhd_image_builder, the RFNoC 3 FPGA image building tool, with a new tool called rfnoc_image_builder. This tool produces a FPGA
bitstream based on an Image Core YAML file that describes the device configuration (e.g. X310 with dual 10GigE) and included RFNoC blocks along
with their connections (both static and dynamic), clocking, and 1/O.

Both rfnocmodtool and the UHD in-tree example called rinoc-example automatically setup make targets to handle runnmg rfnoc_image_builder. If you
want to use rfnoc_image_builder directly, more details can be found in the

RFNoC 4 supports GNU Radio 3.8 only. Most of your RFNoC Block?s GNU Radio related changes will be due to API differences between GNU Radio
3.7 to 3.8. These changes are outside of the scope of this article. Instead, refer to and
sites for more information.

Migration reference files for this section from the Gain RFNoC Block example:

Description RFNoC 3 Files RFNoC 4 Files
lib/gain_impl.cc lib/gain_impl.cc
GNU Radio Block lib/gain_impl.h lib/gain_impl.h
include/example/gain.h include/example/gain.h
GRC Block Description grc/gain.xml grc/gain.yml
Example GRC Flowgraph examples/gain.grc examples/gain.grc

Note: Files are relative to the rfnoc-example directory in the respective rfnoc3 and rfnoc4 directories

When transition between a RFNoC block and a GNU Radio block or vice versa, you must insert either a RX stream or TX streamer block respectively.
This differs from RFNoC 3, where a RFNoC block could be directly connected to a GNU Radio block.

RFNoC gain
Gain: 1
—b‘ RFMNoC Tx Streamer [} - D_ Block Args: [} - D RFMoC Rx Streamer h—
Device Select: -1
Instance Select: -1

The base class for RFNoC Block?s in GNU Radio have a set of functions that provide a shortcut to getting and setting properties without writing custom
class methods. The table below lists the functions.

Property Type Set Property Get Property
Integer set_int_property(...) get_int_property(...)
Double set_double_property(...) get double_property(...)
Bool set_bool_property(...) get_bool_property(...)
String set_string_property(...) get_string_property(...)
Example code for GNU Radio Companion YAML Block Description file
templates:
imports: |-
import example
make: |-

example.gain (
self.rfnoc_graph,
uhd.device_addr (${block_args}),
${device_select},
${instance_select})
self.${id}.set_int_property('gain', ${gain})
callbacks:
- set_int_property('gain', ${gain})

https://kb.ettus.com/Getting_Started_with_RFNoC_in_UHD_4.0
https://wiki.gnuradio.org/index.php/GNU_Radio_3.8_OOT_Module_Porting_Guide
https://wiki.gnuradio.org/index.php/YAML_GRC
https://kb.ettus.com/File:rx_tx_streamer.png

	pdf-book697673f49f299

