
RFNoC 4 Migration Guide
Contents

1 Abstract•
2 Prerequisites

2.1 Dependencies (Ubuntu 20.04 & 22.04)♦
2.2 Vivado 2021.1 Design Edition♦
2.3 UHD 4.6♦
2.4 GNU Radio 3.8♦
2.5 gr-ettus♦

•

3 RFNoC Block Development Environment
3.1 Migrating a GNU Radio Out-of-Tree Module

3.1.1 Creating a RFNoC Block with rfnocmodtool◊
3.1.2 Building OOT module◊
3.1.3 Running a testbench◊
3.1.4 Building a FPGA image◊

♦

3.2 Migrating a Standalone UHD C++ Application
3.2.1 Building rfnoc-example◊
3.2.2 Running a testbench◊
3.2.3 Building a FPGA image◊

♦

•

4 Example RFNoC 3 to RFNoC 4 Block Migration•
5 UHD Software Migration

5.1 Noc Script XML Replaced by Block Description YAML♦
5.2 RFNoC API Changes♦
5.3 Block Properties

5.3.1 RFNoC 3 Noc Script XML snippet◊
5.3.2 RFNoC 4 Block Controller Class◊

♦

•

6 FPGA Migration
6.1 Noc Shell Changes

6.1.1 Generating a Custom Noc Shell◊
6.1.2 Changing Noc ID without using rfnoc_create_verilog◊
6.1.3 Goodbye AXI Wrapper◊

♦

6.2 Settings Bus replaced by CtrlPort♦
6.3 Testbench Infrastructure♦
6.4 Building FPGA images using Image Core YAML Files♦

•

7 GNU Radio Software Migration
7.1 RX & TX Streamer Blocks♦
7.2 Setting RFNoC Block Properties Directly in GNU Radio♦

•

The UHD 4.0 release includes a major upgrade to the RFNoC framework called RFNoC 4. This article is a guide to aid users in migrating their existing
RFNoC blocks from RFNoC 3 to RFNoC 4. The RFNoC Block Development Environment section provides guidance on how to setup an environment for
developing out-of-tree RFNoC blocks in RFNoC 4. The UHD, FPGA, GNU Radio Migration sections provide general information on topics that most
users will encounter when migrating their blocks. Finally, an equivalent RFNoC 3 and RFNoC 4 implementation of a digital gain RFNoC Block has been
provided as a reference.

 sudo apt-get install autoconf automake build-essential cmake cpufrequtils doxygen ethtool \
 g++ git inetutils-tools libboost-all-dev libusb-1.0-0 libusb-1.0-0-dev libudev-dev \
 libspdlog-dev doxygen swig python3-docutils python3-mako python3-numpy python3-requests \
 python3-ruamel.yaml python3-setuptools cmake build-essential git g++ libgmp-dev swig \
 python3-sphinx python3-lxml doxygen libfftw3-dev libsdl1.2-dev libgsl-dev libqwt-qt5-dev \
 libqt5opengl5-dev python3-pyqt5 liblog4cpp5-dev libzmq3-dev python3-yaml python3-click \
 python3-click-plugins python3-zmq python3-scipy python3-gi python3-gi-cairo \
 gir1.2-gtk-3.0 libcodec2-dev libgsm1-dev pybind11-dev python3-matplotlib libsndfile1-dev \
 python3-jsonschema python3-pygccxml libtinfo5 libncurses5

Please refer to the dependencies section on the FPGA build page in UHD's manual.

Note 1: Make sure to install AR76780 Patch for Vivado 2021.1

Note 2: The dependencies step above includes installing libtinfo5 libncurses5, which is a workaround for getting Vivado 2021.1 to run on Ubuntu 20.04 &
22.04

 git clone --branch UHD-4.6 https://github.com/ettusresearch/uhd.git uhd
 mkdir uhd/host/build; cd uhd/host/build
 cmake ..
 make
 sudo make install

Note: If your design does not use GNU Radio, then installing GNU Radio and gr-ettus is not required

 git clone --branch maint-3.8 --recursive https://github.com/gnuradio/gnuradio.git gnuradio
 mkdir gnuradio/build; cd gnuradio/build;
 cmake ..
 make
 sudo make install

You can also reference the GNU Radio Build Instructions for more detailed information.

 git clone --branch maint-3.8-uhd4.0 https://github.com/ettusresearch/gr-ettus.git gr-ettus
 mkdir gr-ettus/build; cd gr-ettus/build;
 cmake -DENABLE_QT=True ..
 make
 sudo make install

https://files.ettus.com/manual_archive/v4.6.0.0/html/md_usrp3_build_instructions.html
https://support.xilinx.com/s/article/76780?language=en_US
https://github.com/ettusresearch/uhd.git
https://github.com/gnuradio/gnuradio.git
https://wiki.gnuradio.org/index.php/UbuntuInstall
https://github.com/ettusresearch/gr-ettus.git

Two options exist for developing RFNoC blocks depending on whether the your RFNoC block integrates with GNU Radio in an out-of-tree module or if it
only uses UHD?s C++ API in a standalone application. The sections below outline how to setup the development environment for each scenario.

The tool rfnocmodtool automates the process of creating GNU Radio out-of-tree (OOT) modules that also have support for RFNoC blocks. This tool is
part of gr-ettus and it has been ported to RFNoC 4.

Due to changes in almost every source file, it is recommended to use rfnocmodtool to generate a new RFNoC block from scratch and then update the
generated ?skeleton? files.

The following steps show how to create an OOT module called example and RFNoC block called gain using rfnocmodtool. The naming is only for
example purposes.

 rfnocmodtool newmod
 Name of the new module: example

 cd rfnoc-tutorial
 rfnocmodtool add
 Enter name of block/code (without module name prefix): gain
 Enter valid argument list, including default arguments: (leave blank)
 Add Python QA code? [y/N] N
 Add C++ QA code? [y/N] N
 Block NoC ID (Hexadecimal): (Enter Noc ID of your block)
 Skip Block Controllers Generation? [UHD block ctrl files] [y/N] N
 Skip Block interface files Generation? [GRC block ctrl files] [y/N] N

Note: Noc IDs have been reduced from 64-bits in RFNoC 3 to 32-bits in RFNoC 4

The following are the relevant files that need to be updated when migrating your RFNoC Block.

 rfnoc-example/
 grc/
 example_gain.block.yml ? RFNoC Block GNU Radio Companion YAML file
 examples/
 gain.grc ? Example flowgraph using gain RFNoC Block
 include/tutorial/
 gain.h ? GNU Radio block C++ header
 gain_block_ctrl.hpp ? RFNoC Block Controller C++ header
 lib/
 gain_impl.cc ? GNU Radio block C++ source
 gain_impl.h ? GNU Radio block C++ header
 gain_block_ctrl_impl.cpp ? RFNoC Block Controller C++ source
 rfnoc/blocks/
 gain.yml ? RFNoC Block Description YAML file
 rfnoc/fpga/rfnoc_block_gain
 noc_shell_gain.v ? RFNoC Block Noc Shell Verilog Source
 rfnoc_block_gain.v ? RFNoC Block Verilog Source
 rfnoc_block_gain_tb.v ? RFNoC Block Testbench
 rfnoc/icores
 gain_x310_rfnoc_image_core.yml ? Image Core YAML file with gain block

 cd rfnoc-tutorial
 mkdir build; cd build
 cmake -DUHD_FPGA_DIR=(path to uhd/fpga directory) ..
 make
 sudo make install

CMake automatically creates makefile targets to run the generated testbench code for each added RFNoC block. For example, here is how to run the
gain block testbench:

 cd rfnoc-tutorial/build
 make rfnoc_block_gain_tb

CMake automatically creates makefile targets to build FPGA images using the generated image core yaml files found in rfnoc/icore. Every RFNoC block
created by rfnocmodtool automatically has an image core yaml file generated in that directory. For example, here is how to build an FPGA image using
the image core yaml file generated for the gain block:

 cd rfnoc-tutorial/build
 make gain_x310_rfnoc_image_core

For applications that only use the UHD API, an example out-of-tree (UHD source tree) RFNoC block exists called rfnoc-example. It is located in the UHD
source at uhd/host/examples/rfnoc-example. This directory can be copied outside of the UHD source tree and used a starting point to migrate your
RFNoC block.

The following are the relevant files that need to be updated when migrating your RFNoC Block.

 rfnoc-example/
 apps/
 init_gain_block.cpp ? Example C++ application testing gain block
 blocks/
 gain.yml ? RFNoC Block Description YAML file
 fpga/rfnoc_block_gain
 noc_shell_gain.v ? RFNoC Block Noc Shell Verilog Source
 rfnoc_block_gain.v ? RFNoC Block Verilog Source
 rfnoc_block_gain_tb.v ? RFNoC Block Testbench
 icores/
 x310_rfnoc_image_core.yml ? Example Image Core YAML file
 include/rfnoc/example
 gain_block_control.hpp ? RFNoC Block Controller C++ header
 lib/
 gain_block_control.cpp ? RFNoC Block Controller C++ source

 cd rfnoc-example
 mkdir build; cd build
 cmake ..
 make

 sudo make install

CMake automatically creates makefile targets to run RFNoC Block testbench simulations. For every RFNoC block subdirectory listed in the
CMakeLists.txt file in the rfnoc-example/fpga directory, a target with the RFNoC block name appended with ?_tb? is added as a makefile target. For
example, here is how to run the gain RFNoC block testbench:

 cd rfnoc-example/build
 make rfnoc_block_gain_tb

CMake automatically creates makefile targets to build a FPGA image for each image core yaml file listed in the CMakeLists.txt file in the
rfnoc-example/icore directory. Each image core yaml file must be listed in the CMakeLists.txt. For example, here is how to build an FPGA image using
the image core yaml file generated for the gain block:

 cd rfnoc-tutorial/build
 make gain_x310_rfnoc_image_core

This ZIP archive, File:migration example.zip, contains equivalent RFNoC 3 and RFNoC 4 versions of a digital gain RFNoC Block. The following sections
will refer to files in this archive to show how the file structure changes when migrating from RFNoC 3 to RFNoC 4.

Migration reference files for this section from the Gain RFNoC Block example:

Description RFNoC 3 Files RFNoC 4 Files

Block Description rfnoc/blocks/gain.xml lib/gain_block_ctrl_impl.cpp
include/example/gain_block_ctrl.hpp

Block Controller rfnoc/blocks/gain.yml lib/gain_block_ctrl_impl.cpp
include/example/gain_block_ctrl.hpp

Note: Files are relative to the rfnoc-example directory in the respective rfnoc3 and rfnoc4 directories

RFNoC 3 used Noc Script XML, a domain specific language, to describe the configuration of a RFNoC block: the Noc ID, register names and addresses,
args for writing to the registers, and the input/output ports.

RFNoC 4 replaces the Noc Script XML file with an easier to read and edit Block Description YAML file format. From a high level, the Block Description
YAML file serves a similar function as the Noc Script XML file, with some similarities and key differences outlined in table below:

Item Noc Script XML Block Descript YAML RFNoC 4 Notes
Block Name <name>gain</name> module_name: gain

Noc ID <id>B160000000000000</id> noc_id: 0xB16 Noc ID are limited to 32-bits

Registers

 <registers>
 <setreg>
 <name>GAIN</name>
 <address>128</address>
 </setreg>
 </registers>

N/A Registers must be defined in the Block Controller

Arguments

 <args>
 <arg>
 <name>gain</name>
 <type>int</type>
 ...
 </arg>
 </args>

N/A Args are implemented with properties in the Block Controller

Data Ports

 <ports>
 <sink>
 <name>in</name>
 </sink>

 <name>out</name>

 </ports>

 data:
 fpga_iface: axis_pyld_ctxt
 clk_domain: rfnoc_chdr
 inputs:
 in:
 ...
 outputs:
 out:
 ...

Control Ports N/A

 control:
 sw_iface: nocscript
 fpga_iface: ctrlport
 interface_direction: slave
 ...

Clocking N/A

 clocks:
 - name: rfnoc_chdr
 freq: "[]"
 - name: rfnoc_ctrl
 freq: "[]"

Note: For a more detailed description of the RFNoC 4 Block Description YAML syntax and the various options, see the RFNoC Specification.

Much of the user facing RFNoC software API has not changed or remains very similar between RFNoC 3 and RFNoC 4. The table below outlines some
of the notable differences:

RFNoC 3 RFNoC 4 RFNoC 4 Notes
 usrp = uhd::device3::make(...) graph = uhd::rfnoc::rfnoc_graph::make() No longer need to create a device3 object
 usrp->get_block_ctrl(...) graph->get_block(...) Rename

N/A graph->enumerate_static_connections() Used to check static connections, for example the DDC and DUC
blocks are usually statically connected to the radio block

 usrp->get_tx_streamer(...) graph->create_tx_streamer(...) Rename
 usrp->get_rx_streamer(...) graph->create_rx_streamer(...) Rename
N/A graph->commit() Commit graph and run initial checks
 sr_write(...) regs().poke32(...) Address increments by 4
 sr_read32(...) regs().peek32(...) Address increments by 4

https://kb.ettus.com/File:migration_example.zip
https://files.ettus.com/app_notes/RFNoC_Specification.pdf

 sr_read64(...) regs().poke64(...) Address increments by 8
 set_arg(...) set_property(...) Block args replaced with block properties concept
 get_arg(...) get_property(...) Block args replaced with block properties concept

In RFNoC 3, RFNoC blocks can have arguments (also known as args) that are used to write user registers. This is implemented in the Noc Script XML
in the <args> section.

RFNoC 4 expands and generalizes this concept with block properties: a high-level representation of the state of the block. Zero or more properties can
be defined by the user in their RFNoC Block?s Block Controller C++ class. When read or written to, they can trigger a callback to a user defined resolver
function. The RFNoC Specification provides more details on properties in the ?Block Properties? section.

The following shows an example of how to migrate a RFNoC 3 Noc Script XML ?arg? based register write to a RFNoC 4 property based implementation
in the Block Controller:

 <registers>
 <setreg>
 <name>GAIN</name>
 <address>128</address>
 </setreg>
 </registers>

 <args>
 <arg>
 <name>gain</name>
 <type>int</type>
 <value>1</value>
 <check>GE($gain, 0) AND LE($gain, 32767)</check>
 <check_message>Gain must be in the range [0, 32767]</check_message>
 <action>SR_WRITE("GAIN", $gain)</action>
 </arg>
 </args>

 // <registers>
 // <setreg>
 // <name>GAIN</name>
 // <address>128</address>
 // </setreg>
 // </registers>
 // Note: In RFNoC 4, register addresses can start at address 0 instead of address 128 as in RFNoC 3.
 const uint32_t gain_block_ctrl::REG_GAIN_ADDR = 0;
 const uint32_t gain_block_ctrl::REG_GAIN_DEFAULT = 1;

 class gain_block_ctrl_impl : public gain_block_ctrl
 {
 public:
 RFNOC_BLOCK_CONSTRUCTOR(gain_block_ctrl)
 {
 _register_props();
 }
 private:
 void _register_props()
 {
 register_property(&_user_reg, [this]() {
 int user_reg = this->_user_reg.get();
 // <check>GE($gain, 0) AND LE($gain, 32767)</check>
 // <check_message>Gain must be in the range [0, 32767]</check_message>
 if (user_reg < 0 || user_reg > 32767) {
 throw uhd::value_error("Size value must be in [0,32767]");
 }
 // <action>SR_WRITE("GAIN", $gain)</action>
 this->regs().poke32(REG_USER_ADDR, user_reg);
 });
 }

 // <name>gain</name>
 // <type>int</type>
 // <value>1</value>
 property_t<int> _user_reg{"gain", REG_USER_DEFAULT, {res_source_info::USER}};
 }

As the above shows, writing to a register can be replicated with a property and a resolver function. Of course, the resolver function can also be made
much more sophisticated. For additional examples, see the in-tree block controllers in uhd/host/lib/rfnoc.

Migration reference files for this section from the Gain RFNoC Block example:

Description RFNoC 3 Files RFNoC 4 Files
Block Verilog Code rfnoc/fpga-src/noc_block_gain.v rfnoc/fpga/rfnoc_block_gain/rfnoc_block_gain.v
Block Noc Shell N/A rfnoc/fpga/rfnoc_block_gain/noc_shell_gain.v
Block Testbnech rfnoc/testbench/noc_block_gain/noc_block_gain_tb.sv rfnoc/fpga/rfnoc_block_gain/rfnoc_block_gain_tb.sv
Image Core N/A rfnoc/icores/gain_x310_rfnoc_image_core.yml
Note: Files are relative to the rfnoc-example directory in the respective rfnoc3 and rfnoc4 directories

RFNoC 4 replaces the highly parameterized RFNoC 3 Noc Shell with a per-block customized Noc Shell generated from the block?s Block Description
YAML file. The Noc Shell generated via rfnocmodtool or the existing one in rfnoc-example is acceptable for most blocks that require one input and
output data port.

Some blocks may need multiple data ports or other modifications. This requires editing the Block Description YAML file and then using the Python script
rfnoc_create_verilog.py (found in uhd/host/utils/rfnoc_blocktool) to generate a new Noc Shell instance.

The argument ?-c? is used to provide the YAML file location. ?-d? provides the output destination directory.

Note: It is suggested to not set the destination directory to your existing RFNoC block code, as the script will automatically overwrite the existing code!

https://files.ettus.com/app_notes/RFNoC_Specification.pdf
https://github.com/EttusResearch/uhd/tree/master/host/lib/rfnoc

Example usage:

 rfnoc_create_verilog.py -c ./rfnoc-example/rfnoc/blocks/gain.yml -d ./output/

In the generated Noc Shell Verilog code, a block?s Noc ID can be changed by updating the NOC_ID parameter on the backend_iface module. Make
sure this matches the Noc ID in both the Block Description YAML file and Block Controller C++ code.

The RFNoC 3 version of Noc Shell outputs / accepts CHDR data packets consisting of a header, optional timestamp, and payload on a 64-bit AXI
stream bus. Most designs then used a module called AXI Wrapper to handle the conversion between CHDR data packets and sample streams on a
32-bit AXI stream bus. AXI Wrapper also supported SIMPLE_MODE which for some use cases could transparently handle the header portion of the
CHDR data packet. Otherwise, the user would need to set the header via m_axis_data_tuser.

In RFNoC 4, Noc Shell has absorbed AXI Wrapper?s functionality. Noc Shell outputs two AXI stream buses per input / output port: a payload and
context bus. The payload bus is in most cases identical to AXI Wrapper?s output: a 32-bit stream of samples on an AXI Stream bus with packets
delimited by tlast. The context AXI stream bus carries the header, optional timestamp, and optional metadata. If your block used AXI Wrapper?s
SIMPLE_MODE, then you can loop the context bus back into Noc Shell. If not, you will need to modify the context bus data. Refer to the RFNoC
Specification for the format and timing diagram of the context bus.

Important Note: If your block used the AXI Rate Change module, Noc Shell has another data port mode to support this use case called axis_data that
can be set in the Block Descriptor YAML file (see the fpga_iface entry). This mode causes the Noc Shell data ports to look more like AXI Wrapper?s and
therefore makes them compatible with AXI Rate Change. See the DDC, DUC, or Keep One in N RFNoC Blocks for an example.

CtrlPort replaces the Settings Bus in RFNoC 4. The CtrlPort bus is similar to the Settings Bus with a few key differences. The table below compares the
signaling between the two bus formats and provides notes on any differences. Timing diagrams and additional information on the CtrlPort bus are also
available in the RFNoC Specification.

Settings Bus (RFNoC
3) CtrlPort (RFNoC 4) RFNoC 4 Notes

set_stb ctrlport_reg_wr Write strobe

set_addr ctrlport_req_addr 20-bits instead of 8-bits, increments by 4 instead of by 1, no reserved addresses (versus addresses
0-127 for Settings Bus)

set_data ctrlport_req_data Write data
N/A ctrlport_req_rd Read strobe equivalent of ctrlport_req_wr
rb_addr N/A CtrlPort uses ctrlport_req_addr for both read and write addresses
rb_data ctrlport_resp_data Read data, 32-bits instead of 64-bits
rb_stb N/A CtrlPort requires ack strobe for reads and writes

One additional difference when using CtrlPort is that there is not an equivalent Settings Register module. The bus is simple enough to setup a clocked
process to handle reading from and writing to registers. See the Verilog example below:

 // Note: Register addresses increment by 4
 localparam REG_USER_ADDR = 0; // Address for example user register
 localparam REG_USER_DEFAULT = 0; // Default value for user register

 reg [31:0] reg_user = REG_USER_DEFAULT;

 always @(posedge ctrlport_clk) begin
 if (ctrlport_rst) begin
 reg_user = REG_USER_DEFAULT;
 end else begin
 // Default assignment
 m_ctrlport_resp_ack <= 0;

 // Read user register
 if (m_ctrlport_req_rd) begin // Read request
 case (m_ctrlport_req_addr)
 REG_USER_ADDR: begin
 m_ctrlport_resp_ack <= 1;
 m_ctrlport_resp_data <= reg_user;
 end
 endcase
 end

 // Write user register
 if (m_ctrlport_req_wr) begin // Write requst
 case (m_ctrlport_req_addr)
 REG_USER_ADDR: begin
 m_ctrlport_resp_ack <= 1;
 reg_user <= m_ctrlport_req_data[31:0];
 end
 endcase
 end
 end
 end

Important Note: For blocks that make heavy use of the Settings Bus and/or Settings Registers, there is a CtrlPort to Settings Bus bridge available called
ctrlport_to_settings_bus. See the Keep One In N RFNoC Block for example code on how to interface with it.

While RFNoC 4 does overhaul the RFNoC 3 testbench infrastructure API, most of the high level concepts remain the same. The table below outlines
some of the commonly used RFNoC 3 functions / code and the RFNoC 4 equivalent.

Operation RFNoC 3 RFNoC 4

Setup RFNoC
 `RFNOC_SIM_INIT(...)
 `RFNOC_ADD_BLOCK(...)
 `RFNOC_CONNECT(...)

 RfnocBlockCtrlBfm #(...) blk_ctrl = new(...);
 blk_ctrl.connect_master_data_port(...)
 blk_ctrl.connect_slave_data_port(...)

Note: Instantiate one Block Controller BFM per RFNoC Block

Setup Test Cases `TEST_CASE_START(...)
 `TEST_CASE_DONE(...)

 test.start_test(...)
 test.end_test()

https://files.ettus.com/app_notes/RFNoC_Specification.pdf
https://files.ettus.com/app_notes/RFNoC_Specification.pdf
https://files.ettus.com/app_notes/RFNoC_Specification.pdf

Register Read tb_streamer.read_reg(...) blk_ctrl.reg_read(...)

Register Write tb_streamer.write_reg(...) blk_ctrl.reg_write(...)

Send Data / Samples tb_streamer.send(...) blk_ctrl.send_items(...)

Receive Data / Samples tb_streamer.recv(...) blk_ctrl.recv_items(...)

RFNoC 4 replaces uhd_image_builder, the RFNoC 3 FPGA image building tool, with a new tool called rfnoc_image_builder. This tool produces a FPGA
bitstream based on an Image Core YAML file that describes the device configuration (e.g. X310 with dual 10GigE) and included RFNoC blocks along
with their connections (both static and dynamic), clocking, and I/O.

Both rfnocmodtool and the UHD in-tree example called rfnoc-example automatically setup make targets to handle running rfnoc_image_builder. If you
want to use rfnoc_image_builder directly, more details can be found in the Getting Started with RFNoC in UHD 4.0.

RFNoC 4 supports GNU Radio 3.8 only. Most of your RFNoC Block?s GNU Radio related changes will be due to API differences between GNU Radio
3.7 to 3.8. These changes are outside of the scope of this article. Instead, refer to GNU Radio 3.8 Migration Guide and GNU Radio Companion YAML
sites for more information.

Migration reference files for this section from the Gain RFNoC Block example:

Description RFNoC 3 Files RFNoC 4 Files

GNU Radio Block
lib/gain_impl.cc
lib/gain_impl.h
include/example/gain.h

lib/gain_impl.cc
lib/gain_impl.h
include/example/gain.h

GRC Block Description grc/gain.xml grc/gain.yml
Example GRC Flowgraph examples/gain.grc examples/gain.grc
Note: Files are relative to the rfnoc-example directory in the respective rfnoc3 and rfnoc4 directories

When transition between a RFNoC block and a GNU Radio block or vice versa, you must insert either a RX stream or TX streamer block respectively.
This differs from RFNoC 3, where a RFNoC block could be directly connected to a GNU Radio block.

The base class for RFNoC Block?s in GNU Radio have a set of functions that provide a shortcut to getting and setting properties without writing custom
class methods. The table below lists the functions.

Property Type Set Property Get Property
Integer set_int_property(...) get_int_property(...)
Double set_double_property(...) get_double_property(...)
Bool set_bool_property(...) get_bool_property(...)
String set_string_property(...) get_string_property(...)
Example code for GNU Radio Companion YAML Block Description file

 templates:
 imports: |-
 import example
 make: |-
 example.gain(
 self.rfnoc_graph,
 uhd.device_addr(${block_args}),
 ${device_select},
 ${instance_select})
 self.${id}.set_int_property('gain', ${gain})
 callbacks:
 - set_int_property('gain', ${gain})

https://kb.ettus.com/Getting_Started_with_RFNoC_in_UHD_4.0
https://wiki.gnuradio.org/index.php/GNU_Radio_3.8_OOT_Module_Porting_Guide
https://wiki.gnuradio.org/index.php/YAML_GRC
https://kb.ettus.com/File:rx_tx_streamer.png

	pdf-book697673f49f299

