RFNoC Frequently Asked Questions
Contents

> L 2R 2R 2R 4 L 2R 2R 2% 2% 2 > L 2R 4 L 2R 2R 2R 4 L 2R 2R 4
S SO S

L 2R 2% 2R 4

Each stream endpoint (SEP) has an ingress buffer to store data received from others stream endpoints. This size of this buffer affects the data transfer
rate that can be achieved when streaming to that endpoint. A larger ingress buffer in the stream endpoint means that there is more space to put data,
minimizing idle time on the network. Additionally, streamers can queue up data before it is needed, reducing the chance of a buffer underflow.

The stream endpoint buffer size is set by adding a parameter under the endpoint you want to configure in the RFNoC image core YAML file. There are
two parameters you can use to set the stream endpoint ingress buffer size in your RFNoC image core YAML file.

e pburf_size: Buffer size in CHDR words. The size in bytes depends on the CHDR width. For example, if the chdr_width parameter for the
device is 64, then each CHDR word is 8 bytes. So a buff size of 32768 would be 262,144 bytes or 256 KiB. See for an example.
*puff_size_bytes: Buffer size in bytes. See for an example.

The buffer size should be a power of two in size to make optimal use of FPGA RAM resources. The default FPGA bitstreams typically set them to the
largest size the FPGA can fit in order to maximize performance. Here are some general recommendations:

¢ Set to o if you don't need to send data to that SEP.

¢ Set to 8192 bytes (8 KiB = 1 MTU) minimum in order to stream data packets.

® Set to 32768 bytes (32 KiB = 4 MTU) in order to stream at maximum rates between SEPs on the same FPGA.

e Setto 262144 bytes (256 KiB = 32 MTU) or lager for high performance streaming between a host computer and the FPGA.

Note that the requirements are application-dependent, so optimal sizes for your application may be different. MTU refers to the maximum transmission
unit, which is the largest CHDR packet supported by the FPGA.

If you need to free up FPGA resources (particularly block RAM) for your application, you can reduce the SEP buffer sizes. Just keep in mind that the
maximum streaming rate may be affected.

The table below summarizes the DRAM that is connected to the USRP for use by RFNoC.
USRP DRAM Summary

USRP Model DRAM Size Default DRAM Speed Default User Interface
E31x 512 MiB 16-bit @ 800 MT/s (1.6 GB/s) 2 ch x 64-bit @ 100 MHz
E320 2GiB 32-bit @ 1333 MT/s (5.33 GB/s) 4 ch x 64-bit @ 300 MHz
N3xx 2 GiB 32-bit @ 1300 MT/s (5.2 GB/s) 4 ch x 64-bit @ 303.819 MHz
X3xx 1GiB 32-bit @ 1200 MT/s (4.8 GB/s) 2 ch x 64-bit @ 300 MHz
X410 (100 and 200 MHz BW) 4 GiB 64-bit @ 2.0 GT/s (16.0 GB/s) 4 x 64-bit @ 250 MHz

X410 (400 MHz BW) 4 x 128-bit @ 250 MHz (using 2 banks)

https://github.com/EttusResearch/uhd/blob/197cdc4f665cbd4e6394a7eeb44b405f67ab10b1/fpga/usrp3/top/x300/x310_rfnoc_image_core.yml#L20
https://github.com/EttusResearch/uhd/blob/197cdc4f665cbd4e6394a7eeb44b405f67ab10b1/fpga/usrp3/top/x400/x410_200_rfnoc_image_core.yml#L21

4 GiB per bank 64-bit @ 2.0 GT/s (16.0 GB/s) per bank
(8 GiB total) (32.0 GB/s total)

X440 (400 MHz BW) ?8%%%3{;")"‘”“ ??fg.kﬂté%/zs-”{o%/ s (19.2 GB/s) perbank g, 128 it @ 300 MHz (using 2 banks)
4 GiB per bank 64-bit @ 2.4 GT/s (19.2 GB/s) per bank

X440 (1600 MHz BW) (8 GiBtotal) (38.4 GB/s total)

2 x 512-bit @ 300 MHz (using 2 banks)

DRAM performance is highly application-specific. For example, reading vs. reading and writing simultaneously, one data stream vs. multiple data
streams, random access vs. sequential access, etc., can give dramatically different performance. Below are some measurements taken on different
USRPs where a Null-Source-Sink RFNoC block is directly connected to a DMA FIFO block to test maximum streaming rates through the DRAM. The
DRAM is shared between channels, so throughput goes down as the number of channels going through the DRAM is increased.

Example DRAM Throughput (Per Channel)

USRP Model BIST (MB/s) 1Ch (MS/s) 2Ch (MS/s) 3 Ch (MS/s) 4 Ch (MS/s)

E31x 666 166 91 N/A N/A
E320 1361 340 299 191 148
N3xx 1368 341 295 191 144
X3xx 1347 336 274 N/A N/A
X410 (100 and 200 MHz BW) 1288 321 316 314 303
X410 (400 MHz BW) 2801 697 672 672 672
X440 (400 MHz BW) 3360 798 784 616 461
X440 (1600 MHz BW) 8118 2007 2007 N/A N/A
Notes:

1. E31x, N3xx, and X410 were tested using UHD 4.2. E320 and X3xx were tested using UHD 4.3.

2. BIST refers to the built-in self test, which gives a measure of raw data throughput for a single channel.

3. For MS/s, we assume 4 bytes per sample (sc16).

4. X410 with 400 MHz bandwidth uses two independent memory banks, with channels 0-1 on Bank 0, and channels 2-3 on Bank 1 by default.
The traffic flows on Bank 0 and Bank 1 are independent and do not affect each other. Therefore, a 4-channel configuration has the same
performance as a 2-channel configuration.

5. X440 uses two independent memory banks. For 400 MHz, channels 0-3 are on Bank 0 and channels 4-7 are on Bank 1 by default. For 1600
MHz, channel 0 is on Bank 0 and channel 1 is on bank 1 by default. The traffic flows on Bank 0 and Bank 1 are independent and do not affect
each other. Therefore, a 2-channel configuration has the same performance as a 1-channel configuration.

¢ DMA FIFO Block: The DMA FIFO block is used in situations where you need a large buffer to store samples.

¢ Replay Block: The Replay block is used to record and play back RF data. For example, you can record data from a host computer, then play
it back over the radio. Or, record data from the radio, then play it back later to the host for analysis, or play it back to a radio at a specific
timestamp. See for additional information. The Replay block also has a FIFO capability for situations
in which the DMA FIFO block is not available in your FPGA image.

e Custom Blocks: You can also create your own RFNoC block that uses DRAM. Refer to the DMA FIFO and/or Replay blocks as examples.
If the block you want is not included by default in the FPGA image you are using, you can add it to the RFNoC image core YAML file and rebuild the
FPGA image using Vivado. See for additional information on customizing an RFNoC image.
Note: DRAM is not enabled by default on E31x FPGA builds because the FPGA is not large enough to fit the default image with DRAM. You will need to
remove components from your RFNoC image's YAML file to make room, then build the E31x image with the variable DRAM=1 set, or modify the E31x
Makefile to enable DRAM by default.

Note: The default DRAM configuration used for X410 and X440 changes depending on the configured bandwidth. The default parameters to use for
each image type is shown in the table below.

When adding the blocks to your RFNoC image core YAML file, the parameters must be set correctly for the type of USRP you intend to use. The
memory data width (vevm_paTa_w) and address width (vem_appr_w) must match exactly. The number of ports (xuM_porTs) must not exceed the maximum
number available. You can use fewer ports to save resources if you don't need all the DRAM ports.

RFNoC Block Memory Parameters

USRP Model MEM_DATA_W MEM_ADDR_W NUM_PORTS (Max)
E31x 64 29 2
E320 64 31 4
N3xx 64 31 4
X3xx 64 30 2
X410 (100 and 200 MHz BW) 64 32 4
X410 (400 MHz BW) 128 32 4
X440 (400 MHz BW) 128 32 8
X440 (1600 MHz BW) 512 32 2

The DMA FIFO has a few additional parameters that should be provided. The clock rate (vem_crx_raTE) must match the value below for the built-in self
test (BIST) to work correctly. The base address (r1ro_appr_sase) and address mask (F1ro_appr_mask) are written as Verilog constants and can be
changed depending on your application. The r1ro_appr_ease parameter contains the byte address for the first byte of the memory region to use for each
port. The r1ro_apDR_MASK parameter contains the address mask for each port, which tells the FIFO how much memory to use for each port. For
example, an address mask of 30'nh1rrrrrrr means that 0Ox1FFFFFFF+1 bytes (i.e., 0x20000000 bytes or 512 MiB) will be used by the corresponding
port. The address mask must be 1 less than a power of 2.

The example values in the table below use the entire memory and divide it evenly between all available ports.
DMA FIFO Parameters

USRP Model MEM_CLK_RATE FIFO_ADDR_BASE FIFO_ADDR_MASK

https://kb.ettus.com/Using_the_RFNoC_Replay_Block_in_UHD_4
https://kb.ettus.com/Getting_Started_with_RFNoC_in_UHD_4.0

E31x "20066" "(29'h10000000, 29'h00000000}" "(29'hOFFFFFFF, 20hOFFFFFFF}"

E320 '30066" "(31'h60000000, 31'h40000000, 31'h20000000, "(31'h1FFFFFFF, 31'h1FFFFFFF, 31'h1FFFFFFF,
31'h00000000}" 31'h1FFFFFFF}"

. . "(31'h60000000, 31'h40000000, 31'h20000000, "(31'h1FFFFFFF, 31'h1FFFFFFF, 31'h1FFFFFFF,

N3xx 303819444 31'h00000000}" 31'h1FFFFFFF}"

X3xx "30066" "(30'h20000000, 30'h00000000}" "(380'h1FFFFFFF, 301 FFFFFFF}"

X410 (100 and wpeoer "(32'hC0000000, 32'h80000000, 32'h40000000, "(32'h3FFFFFFF, 32h3FFFFFFF, 32h3FFFFFFF,

200 MHz BW) 32'h00000000}" 32'h3FFFFFFF)"

X410 (400 wpspoen "(32'h80000000, 32'h00000000, 32'h80000000, "(32'h7FFFFFFF, 32h7FFFFFFF, 32h7FFFFFFF,

MHz BW) 32'h00000000}" 32h7FFFFFFF)"

X440 (400 "(32'hC0000000, 32'h80000000, 32'h40000000, "(32'h3FFFFFFF, 32h3FFFFFFF, 32h3FFFFFFF,

MHeBw) 30066 32'h00000000, 32hC0000000, 32h80000000, 32'h3FFFFFFF, 32'h3FFFFFFF, 32h3FFFFFFF,
32140000000, 32'100000000}" 32'h3FFFFFFF, 32'h3FFFFFFF)"

Mt B "300e6" *(32h00000000, 32h00000000}" "{32hFFFFFFFF, 32 hFFFFFFFF)"

See for an example of how to instantiate the Replay block in the RFNoC image core YAML description. The following is a

generic example that can be used for any USRP:

noc_bpblocks:
Instantiate the replay block
replay0:
block_desc: 'replay.yml'
parameters:
NUM_PORTS: <see table>
MEM_DATA_W: <see table>
MEM_ADDR_W: <see table>

connections:
Connect each port of the replay block to a stream endpoint
{ srcblk: <epN>, srcport: out0, dstblk: replay0O, dstport: in_0 }
{ srcblk: replay0O, srcport: out_0, dstblk: <epN>, dstport: in0 }
{ srcblk: <epN+1l>, srcport: out0O, dstblk: replay0, dstport: in_1 }
{ srcblk: replay0, srcport: out_1, dstblk: <epN+1>, dstport: in0O }
... repeat for each remaining Replay port
Connect the replay block memory interface to the USRP DRAM
- { srcblk: replay0, srcport: axi_ram, dstblk: _device_, dstport: dram }

Connect the DRAM clock to the block:
clk_domains:
Connect the DRAM clock to the replay block
- { srcblk: _device_, srcport: dram, dstblk: replay0O, dstport: mem }

See for an example of how to instantiate the DMA FIFO block in the RFNoC image core YAML description. The following is
a generic example that can be used for any USRP:

noc_blocks:
Instantiate the DMA FIFO block
fifoO:
block_desc: 'axi_ram fifo.yml'
parameters:
NUM_PORTS: <see table>
MEM_DATA_W: <see table>
MEM_ADDR_W: <see table>
FIFO_ADDR_BASE: <see table>
FIFO_ADDR_MASK: <see table>
MEM_CLK_RATE: <see table>

connections:
Connect each port of the DMA FIFO block to a stream endpoint, or insert it
into the data path where desired. This examples uses stream endpoints.

{ srcblk: <epN>, srcport: outO, dstblk: fifoO, dstport: in_0 }
{ srcblk: replay0O, srcport: out_0, dstblk: <epN>, dstport: in0O }
{ srcblk: <epN+1l>, srcport: outO, dstblk: fifoO, dstport: in_1 }
{ srcblk: fifoO, srcport: out_1, dstblk: <epN+1>, dstport: in0O }
. repeat for each remaining FIFO port

Connect the DMA FIFO block memory interface to the USRP DRAM

- { srcblk: fifo0O, srcport: axi_ram, dstblk: _device_, dstport: dram }

[RS

clk_domains:
Connect the DRAM clock to the replay block

- { srcblk: _device_, srcport: dram, dstblk: fifoO, dstport: mem }

Each device has different clocks available. See below for a list of clocks exposed to RFNoC. Although they have intended purposes, you can use any of
these clocks for any purpose. The rfnoc_chdr_clock is @ good default choice. This clock is always available in your block, even if it is not explicitly
connected in the RFNoC image YAML description.

See the table below for the clock rates. The radio clock rate depends on the master clock rate.

Clock Name Description Frequency
rfnoc_chdr ~ RFNoC CHDR clock 100 MHz
rfnoc_ctrl ~ RFNoC Control clock 40 MHz

dram DRAM interface clock 100 MHz
radio Radio interface clock Same as master clock rate

https://github.com/EttusResearch/uhd/blob/197cdc4f665cbd4e6394a7eeb44b405f67ab10b1/fpga/usrp3/top/x300/x310_rfnoc_image_core.yml#L69
https://github.com/EttusResearch/uhd/blob/197cdc4f665cbd4e6394a7eeb44b405f67ab10b1/fpga/usrp3/top/e320/e320_rfnoc_image_core.yml#L49

Clock Name
rfnoc_chdr
rfnoc_ctrl
dram

radio

Clock Name
rfnoc_chdr
rfnoc_ctrl
ce

dram

radio

Clock Name
rfnoc_chdr
rfnoc_ctrl
ce

dram

radio

Clock Name
rfnoc_chdr
rfnoc_ctrl
ce

dram

radio

Clock Name
rfnoc_chdr
rfnoc_ctrl
ce

dram

radio

radio_2x
Clock Name
rfnoc_chdr
rfnoc_ctrl

ce

dram
radio0
radiol

radio0_2x

radiol_2x

Description Frequency
RFNoC CHDR clock 200 MHz
RFNoC Control clock 40 MHz
DRAM interface clock 166.667 MHz

Radio interface clock

Description
RFNoC CHDR clock
RFNoC Control clock
Compute Engine clock
DRAM interface clock
Radio interface clock

Description
RFNoC CHDR clock
RFNoC Control clock
Compute Engine clock
DRAM interface clock
Radio interface clock

Description
RFNoC CHDR clock
RFNoC Control clock
Compute Engine clock
DRAM interface clock
Radio interface clock

Description
RFNoC CHDR clock
RFNoC Control clock
Compute Engine clock
DRAM interface clock

Radio interface clock

Radio interface clock 2x

Same as master clock rate (200 kHz to 61.44 MHz)

Frequency

200 MHz
40 MHz
266.667 MHz (available in UHD 4.6 and later)
303.819 MHz
Same as master clock rate (122.88 MHz, 125.0 MHz, or 153.6 MHz)

Frequency
200 MHz
40 MHz
266.667 MHz (available in UHD 4.6 and later)
303.819 MHz

Same as master clock rate (200 MHz, 245.76 MHz, or 250 MHz)

Frequency
187.5 MHz
93.75 MHz
214.286 MHz
300 MHz
Same as master clock rate (184.32 MHz or 200 MHz)

Frequency
200 MHz
40 MHz
266.667 MHz (available in UHD 4.6 and later)
250 MHz

122.88 MHz when master clock rate is 122.88, 245.76, or 491.52 MHz
125 MHz when master clock rate is 125, 250, or 500 MHz

Twice the frequency of radio

Description Frequency
RFNoC CHDR clock 200 MHz
RFNoC Control clock 40 MHz
Compute Engine clock 266.667 MHz (available in UHD 4.6 and later)
DRAM interface clock 300 MHz

Radio interface clock for daughterboard 0

Radio interface clock for daughterboard 1
Radio interface clock 2x for daughterboard
0

Radio interface clock 2x for daughterboard
1

MHz)
Daughterboard 1 master clock rate divided by 8

Twice the frequency of radioo

Twice the frequency of radiol

Daughterboard 0 master clock rate divided by 8 (e.g., 62.5 MHz if master clock rate is 500

If you only need the clock within your own RFNoC block, you can modify the HDL for your block to generate the clock that you need from one of the
available clocks. To do this, add a new clock to your block's YAML description, connect the available clock to your block in the YAML description of your
RFNoC image, then add a Xilinx MMCM [P instance to your block's HDL and connect the available clock to its input.

Starting with UHD 4.7, you can add clock generation modules that create new clocks based on the existing clocks. Note that you must create such a
module as an HDL module: Describing clocks in the YAML files will not cause them to be generated for you.

Assuming you have such a module, describe the clocks in the module's YAML files as such:

clocks:
- name: ce
direction: in
— name: my_clk
direction: out

Now you will have a new clock called my_c1x, which is derived from the ce clock.

In older versions of UHD, adding custom clocks is not directly supported. If you can't use any of the available clocks, you can modify the HDL code to
generate a clock.

If the clock is needed by multiple RFNoC blocks, or if you want to change an existing clock, you can modify the HDL for the USRP you are using to add
or change a clock. If you add a new clock to the RFNoC image core, you must also update the BSP YAML file (located in

) so that the rfnoc_image_builder knows that the clock exists. How and where the clocks are generated varies
between USRPs. Please refer to the source code for that USRP (.

https://github.com/EttusResearch/uhd/tree/master/host/include/uhd/rfnoc/core
https://github.com/EttusResearch/uhd/tree/master/fpga/usrp3/top

All RFNoC-capable USRPs use Xilinx FPGAs that require a license to use Vivado, except for E31x USRPs, which can use the free Vivado HL
WebPACK Edition. Vivado is required to build FPGAs for RFNoC.

You should always use the Vivado version specified in the UHD documentation for your UHD release, including any required patches. See the
for the latest Vivado version requirements.

The exact version string can be found in the setupenv.sh script for the FPGA target you intend to build (e.g., fpga/usrp3/top/x400/setupenv.sh).

No. You only need to install device support for the FPGA you intend to build. Other devices can be unchecked to save disk space. The following FPGA
types are used by USRPs:

® SoCs > Zyng-7000: E31x, E320, N3xx
¢ SOCs > Zynq UltraScale+ RFSoC: X410
¢ 7 Series > Kintex-7: X3xx

The Software Development Kit (SDK) is typically not required, but can be installed if desired.

The Cable Drivers are needed if you plan to do JTAG download or debug. Note that on Linux, the cable drivers are copied to the install folder, but are
not installed onto your system automatically. See Xilinx UG973 for instructions on installing the cable drivers on Linux.

Vivado needs the 1ibncursess and 1ibtinfos, which are no longer included by default in recent Ubuntu installations. To install them, run the following
commands:

sudo apt update

wget

sudo apt install ./libtinfo5_6.3-2ubuntul.1_amd64.deb
wget

sudo apt install ./libncurses5_6.3-2ubuntu0.1_amd64.deb

While it is technically possible to use a different Vivado version, doing so comes with significant risks. Vivado versions are not fully compatible with each
other, and changing the version usually leads to FPGA build failures. Furthermore, the shipping FPGA images for each UHD release are tested and
validated using the specified Vivado version. Other versions are untested. For these reasons, the build process checks the Vivado version and will raise
an error if you run setupenv.sh with an unsupported version installed.

Because alternative versions are untested, using a different Vivado version is strongly discouraged. If you choose to proceed anyway, you must:

¢ Update the Vivado version string in the setupenv.sh script for your FPGA target.

¢ Update all IP blocks to versions compatible with the new Vivado release, and modify any connections in the USRP code to match the updated
IP interfaces. Failure to update the IP blocks will result in errors about the IP being locked. Incorrect or incomplete updates to IP connections
may cause build failures or result in a non-functional FPGA image.

¢ Additional changes may be required depending on the Vivado version and the specific USRP target you are building. Unfortunately, it's not
possible to predict these changes in advance.

FPGAs have clocks that trigger the transfer of data between internal registers. The Vivado tool does a timing check near the end of the build to ensure
that the paths from each driving register or port to each receiving register or port are not too long for the specified clock period or delay constraints.
When it says "The design did not satisfy timing constraints" it means that Vivado couldn't arrange the logic on the chip in a way that meets all
requirements. There are several reasons this might happen:

* You added new logic to the design with too much logic between registers. In this case, you should modify your design to make meeting timing
easier.

¢ You added new logic, but made a mistake in which you're trying to use the wrong clock or reset, which makes it difficult to meet timing. In this
case you need to correct the mistake in your design.

¢ The design has become too crowded, making it difficult for the tools to meet the timing requirements. In this case you need to remove
something to make more room.

¢ Bad luck. The tools use pseudorandom algorithms to find solutions to really hard problems, and sometimes it doesn't find a good solution
even when one is possible. In this case you can make a minor change to the design and build again to see if it does better the second time. If
you don't change anything, Vivado will normally give you identical results for each build. In UHD 4.4 and later you can add the sutnp_seED=1
option to the make arguments to change a build seed that will affect the build results. Using a different seed number for each build will ensure
that you get a unique build result each time. 0 is the default seed if not specified. Random build failures occur occasionally for some FPGA
targets, in which case you should retry the build with a different seed.

The FPGA tools produce a timing report that says exactly which path failed to meet timing. Sometimes that can point you in the right direction. But
sometimes the path indicated only failed because of another path that's even more difficult. Open post_route_timing_summary.rpt in the build output
folder and search for "(VIOLATED)" to find the path(s) that failed.

Read the post_synth_util.rpt to determine what resource(s) you are running out of in order to know what kinds of changes are needed. Below are
several easy ways to reduce the resource utilization of the FPGA.

¢ If you are not using all RF channels of your device, modify the FPGA YAML file to remove the DDC, DUC, and Radio blocks for the unused
channels, then regenerate the FPGA code using rfnoc_image_builder. Note that you may need at least one Radio block for RFNoC to work
properly. You may also remove the DDC and/or the DUC if your application uses full bandwidth for one or more channels and therefore
doesn't require up or down conversion.

¢ If you are not using DRAM, remove the Replay or DMA FIFO blocks. Also, on X4xx, change the pram_cH variable to 0 in the Makefile for the
FPGA target you are building.

e If you do not need all SFP ports, use a build target that matches your needs. For example, on X4xx, the "X1" option (one 10 Gbps lane) uses
the least resources whereas "X4" (four 10 Gbps lanes) uses a lot more, and the "CG" option (four 25 Gbps lanes) uses the most.

¢ If you do not need the full bandwidth of the device, use a smaller bandwidth option. For example, on X410, the "_100" option (100 MHz
bandwidth) uses less resources than the "_200" option (200 MHz bandwidth).

¢ Add the crossbar_routes definition to the FPGA YAML file to include only the crossbar paths required for your application. This is an
advancled feature in UHD 4.5 and later. This must be done carefully to avoid removing essential paths. See the X440 YAML files for
examples.

Other reductions are possible but require advanced knowledge of UHD and/or RFNoC to avoid breaking key functionality of the device.

https://files.ettus.com/manual/md_usrp3_build_instructions.html
https://files.ettus.com/manual/md_usrp3_build_instructions.html
http://security.ubuntu.com/ubuntu/pool/universe/n/ncurses/libtinfo5_6.3-2ubuntu0.1_amd64.deb
http://security.ubuntu.com/ubuntu/pool/universe/n/ncurses/libncurses5_6.3-2ubuntu0.1_amd64.deb

Vivado supports two modes of operation known as "project mode" and "non-project mode". Project mode is more user-friendly because it creates a
project file that is managed by Vivado and works natively in the Vivado GUI. Non-project mode is generally used by more advanced users who want full
control over the Vivado build process and is typically used in fully scripted or automated build flows. The USRP build flow in UHD uses non-project
mode. As a result, there is no Vivado project file by default.

It is possible to create a project file from the USRP build flow with the following steps:

1. Start the USRP FPGA build in the GUI. In UHD 4.7 and later, this can be done by adding the -g argument to the rfnoc_image_builder
command. In UHD 4.6 and earlier, this can be done by adding cu1=1 to the make arguments. Example: make x410_x4_200 GuI=1

2. After the build completes, run the following command in the TCL Console of Vivado to create the project file and switch to project mode:
save_project_as project_name project_dir
In this example, "project_name" is the name you want to give the project file and "project_dir" is the directory in which you want to put the
project.

3. Set the compile order to automatic:

set_property source_mgmt_mode All [current_project]

In some cases, it may also be necessary to reset the output products for some of the IP. If you get an error message about a BD sub-design being not
generated for the synthesis target, then navigate to the "IP Sources" tab in the Project Manager Sources window, then right-click on affected IP and
select "Reset Output Products...", then click "Reset".

This project file can now be used independently of the normal FPGA build flow in UHD. It is up to the user to update this project file as the design
changes since it will not be managed by the normal build flow in UHD.

High-performance computers are recommended for FPGA builds since an FPGA build can take several hours.

The build process is divided into two steps, IP generation and the FPGA build.

This process can take several hours by default and is run automatically, if needed, when you build an FPGA target. Fortunately, this only needs to be
done once for each USRP type and won't run again unless IP is changed.

You can speed up the IP generation by running this step with multiple jobs. For example:

$ make -j 4 X410_IP

This example will build four IP cores at a time. Note that this generally requires 4 times as much memory and needs at least 4 CPU cores. You can
adjust the number of parallel jobs based on the amount of system memory and/or CPU cores you have available.

Unfortunately, increasing the number of jobs does not speed up FPGA performance because there is only one Vivado instance for the FPGA build.
Vivado, by default, will use multiple CPU cores, where possible, but this does not significantly improve build performance since many parts of the build
are not easily parallelizable.

One way to shorten the build time is to reduce the size of the design. See above on how to reduce the size of your design.

In the case where you need to build multiple FPGA types, you can use the jobs option with make to build multiple FPGAs simultaneously, which can
dramatically reduce the time required per build. Note that this requires a significant amount of memory and CPU cores and therefore is only
recommended for systems that can handle such loads. An example is shown below for building two FPGA images in parallel:

$ make -3j 2 X410_X4_200 X410_CG_400

It is also possible to open separate terminal instances and run one build in each instance to get the same effect. Do not build the same FPGA target in
multiple instances, since multiple builds for the same target would conflict as they try to access and update the same files.

In some Linux distributions (e.g. Ubuntu) dasn is set as default shell which can cause FPGA builds to fail.

Below is an example of the error. Note, that your message may look somewhat different depending on UHD version and USRP target but the important
lines are marked in bold.

rfnoc_image_builder -y e320_rfnoc_image_core_fft.yml -t E320_1G
Using FPGA directory /home/someuser/uhd/fpga
Selected device: e320
Build artifacts directory already exists (contents will be overwritten).
Launching build with the following settings:
* FPGA Directory: /home/someuser/uhd/fpga/usrp3/top/e320
* Build Artifacts Directory: /home/someuser/uhd/fpga/usrp3/top/e320/build-usrp_e320_fpga_1G
* Build Output Directory: /home/someuser/uhd/fpga/usrp3/top/e320/build
* Build IP Directory: /home/someuser/uhd/fpga/usrp3/top/e320/build-ip
Executing the following command: . ./setupenv.sh && make E320_1G BUILD_DIR=/home/someuser/uhd/fpga/usrp3/top/e320/build-usrp_e320_fpga_1G
/bin/sh: 6: ./setupenv.sh: Bad substitution
/bin/sh: 8: ./setupenv.sh: declare: not found
/bin/sh: 9: ./setupenv.sh: PRODUCT_ID_MAP [E320]=zynq/xc7z045/££g900/-3: not found
/bin/sh: 15: ./setupenv.sh: source: not found
Build finished with return code 127.

It is recommended to set the default shell to pash by running the following command in the terminal. When asked use dash as the default system
shell (/bin/sh)? choose <No>.

$ sudo dpkg-reconfigure dash

Confirm your default shell was changed to bash by running this command:
$ 11 /bin/sh

You should see output similar to this:

lrwxrwxrwx 1 root root 4 Oct 10 2020 /bin/sh -> bash*
When you build an FPGA target, a build directory is created in the FPGA's top directory that contains all the build outputs. Here you'll find the build.1og

file as well as report files and checkpoints. Not all log information is printed to the console during build, so make sure you check the buiid.10qg file for
details. It may contain a useful error message that was not printed to the console.

Builds often fail when Vivado encounters an internal error or runs out of memory. For internal errors, the error message is typically not very helpful and
is often due to a bug in Vivado. When Vivado runs out of memory, it may immediately terminate without giving any error message at all. Consider
monitoring the memory usage during the FPGA build to see if you are approaching your system's limit.

If you have made changes to the design, try building an unmodified FPGA image from scratch to ensure the build process is working properly on your
system. If this works, try adding your changes incrementally until the section of code causing the problem is identified.

Note that such errors are often beyond the control of Ettus Research and reaching out to Xilinx support is a better option if it is truly a Vivado issue.
Vivado "locks" IP, for example, when it needs to be updated for the running version of Vivado or FPGA device type. This is intended to force the user to
fix the issue and to avoid building incompatible IP. Build failures related to IP being locked should never occur during a normal build. The IP version in
the UHD repo always matches the Vivado version required for that release of UHD.

This can happen if you have used the wrong version of Vivado or do not have the correct Vivado patches installed. Refer to the Generation 3 usrp
Build Documentation section of the [[UHD and USRP User Manual|UHD Manual] for the required version and patches. When you run the “source
setenv.sh’ step to setup your environment, the script will check to make sure you are using the correct version.

In some cases, reinstalling Vivado might be required.

Once the correct Vivado version and patches are installed, you will need to remove all build products (to remove any locked IP that was generated) and
retry the build. For example:

$ source setupenv.sh # Setup environment and check the Vivado version
$ make cleanall # Remove any bad IP that was generated
$ make X410_X4_200 # Start the build process again

There are many critical warnings that appear during the build process that can be safely ignored. For example, you may see the following:

CRITICAL WARNING: [Vivado 12-1790] Evaluation License Warning: This design contains one or more IP cores that use separately licensed feat
The FPGA builds include IP for which the licenses are included with Vivado, but Vivado prints the warnings anyway. As long as you have a Vivado
license and a bitstream was successfully generated, the IP should work as expected.

One potential cause is due to the order of files in your block's Makefile.srcs. The SystemVerilog file with the package definition must be listed before any
other module that imports the package. Otherwise, Vivado will fail with a "X is not declared" error during synthesis.

	pdf-book697eea74cfd1b

