UHD Python API
Contents

As the name suggests, it exposes the UHD APl into Python. We use pybind11 to generate a Python module which exposes most of the C++ API, and
some extra features. The Python API is part of stable releases.

The USRP Hardware Driver and USRP Manual covers most information about the UHD Python API and can be found here:

In order to test the Python API, check out the master branch and build it like always. When running CMake, make sure that the Python APl was enabled
(-DENABLE_PYTHON_API=ON).

The output from CMake should look something like this:

S R AR R R R R R
—— # UHD enabled components

S HHHEEEEEE R R R R R R R
—-= * LibUHD

LibUHD - C API

LibUHD - Python API

Examples

Utils

Tests

USB

B100O

B200

USRP1

USRP2

X300

N230

OctoClock

Manual

API/Doxygen

Man Pages

I
I
R L

- hEEHHEEFEA R A R A R R
-— # UHD disabled components

S R R R R
- * GPSD

- * E100

- * E300

Please refer to the for extended instructions especially when installing on Windows. Once it's built and installed, you'll be able to import
the und Python module.

We have some examples in . The examples are very simple, but concise.

This Python example is based on the C++ example uhd/host /examples/rx_samples_to_file.cpp.

Documentation is currently pretty sparse. The best we can do right now is to ask users to infer the documentation from the C++ API. For example, the
Python has an object called mu1tiusre which is an equivalent of the C++ mu1ti_usrp APIl. The methods on both classes are the same, and take the
same arguments.


https://files.ettus.com/manual/page_python.html
https://files.ettus.com/manual/page_python.html
https://github.com/EttusResearch/uhd/tree/master/host/examples/python

Does it support Python 2 and 3?

Starting with UHD 4, Python 2 support has been removed.

Does it require GNU Radio?

No.

Does it use SWIG?

No, it uses pybind11. It also doesn't require the C API. Pybind11 is vendored with UHD so as to not require installing another dependency.
How does this relate to the Python API in gr-uhd?

It serves an entirely different purpose. This Python API is for people writing standalone applications for USRPs that *don't* use GNU Radio. gr-und is
staying the way it is, and is going nowhere. If you're using GNU Radio, you probably don't care about this.

Are the UHD Python API and the gr-uhd Python APl compatible?

Short answer: No. Long answer: There are very few cases where it makes sense to mix these APls, so no. However, this means that a Timespec from
the Boost .python APl is not convertible into a time_spec_t from the gr-uhd API.

Does it support RFNoC API?

For sure!

What's the streaming performance?

Worse than straight C++, but not a lot, thanks to NumPy. You can run host/examples/benchmark_rate.py if you want to see for yourself. Overall, recv ()

calls are pretty efficient if you've pre-allocated a NumPy array, because we can cast that to a straight pointer (and also skip any type checking!) and then
it's not that different from a recv () call in a C++ app. However, consuming the data is limited by how fast you can handle that in Python.



	pdf-book697ac707b0d9d

