## Contents

- 1 Device Overview
- 2 Key Features

  - ◆ 2.1 E310 ◆ 2.2 E312
- 2.2 E312
  3 Daughterboard Specifications
  3.1 E310 MIMO XCVR board
  3.2 Tuning
  3.3 Gains
  3.4 LO lock status
  3.5 Filter and Antenna Switches
  3.6 Side A Filter and Antenna Switches
  3.7 Side B Filter and Antenna Switches
  4 BE Specifications
- 4 RF Specifications
  - ◆ 4.1 RF Performance
  - ◆ 4.2 Input/Output Impedance
- 5 Hardware Specifications

  - ◆ 5.1 E310 ◆ 5.2 E312
- 6 Physical Specifications
  - ♦ 6.1 Dimensions
- 7 Environmental Specifications
  - 7.1 Operating Temperature Range
    7.2 Operating Humidity Range
- 8 Schematics
  - ♦ 8.1 E310
- 9 Key Component Datasheets
- 10 Mechanical Information
  - ◆ 10.1 Weight

  - ◆ 10.2 Drawings ♦ 10.2.1 E310 ♦ 10.2.2 E312
- 11 FPGA
- ♦ 11.1 E310/E312
- 12 Interfaces and Connectivity
  - ◆ 12.1 Front Panel
  - ↑ 12.1 From Parier
     ↑ 12.2 Rear Panel
     ↑ 12.3 GPIO
- 12.4 Audio
   13 E312 Battery
   14 Certifications
- ◆ 14.1 RoHS 15 Certificate of Volatility ◆ 15.1 E310
- ♦ 15.2 E312 • 16 SD Card Images
- 17 Security Notes
- 18 Additional Resources
- 19 Downloads

The USRP E310 offers a portable stand-alone SDR platform designed for field deployment. The flexible 2x2 MIMO AD9361 transceiver from Analog Devices provides up to 56 MHz of instantaneous bandwidth and spans frequencies from 70 MHz ? 6 GHz to cover multiple bands of interest.

- Xilinx Zyng 7020 SoC: 7 Series FPGA with ARM Cortex A9 667 MHz dual-core processor
- Analog Devices AD9361 RFIC direct-conversion transceiver
- Frequency range: 70 MHz 6 GHz
   Up to 56 MHz of instantaneous bandwidth
   2x2 MIMO transceiver
- Up to 10 MS/s sample data transfer rate to ARM processor
- RX, TX filter banks
  Integrated GPS receiver
- 9-axis inertial measurement unit
- RF Network on Chip (RFNoC?) FPGA development framework support



- Battery Operated
   Xilinx Zynq 7020 SoC: 7 Series FPGA with ARM Cortex A9 866 MHz dual-core processor
- Analog Devices AD9361 RFIC direct-conversion transceiver
   Frequency range: 70 MHz 6 GHz
- Up to 56 MHz of instantaneous bandwidth
- 2x2 MIMO transceiver
- Up to 10 MS/s sample data transfer rate to ARM processor
- RX, TX filter banks
- Integrated GPS receiver
- 9-axis inertial measurement unit
- RF Network on Chip (RFNoC?) FPGA development framework support



The USRP E310 MIMO XCVR daughterboard features an integrated MIMO capable RF frontend.

The RF frontend has individually tunable receive and transmit chains. Both transmit and receive can be used in a MIMO configuration. For the MIMO case, both receive frontends share the RX LO, and both transmit frontends share the TX LO. Each LO is tunable between 50 MHz and 6 GHz.

All frontends have individual analog gain controls. The receive frontends have 76 dB of available gain; and the transmit frontends have 89.5 dB of available gain. Gain settings are application specific, but it is recommended that users consider using at least half of the available gain to get reasonable dynamic range.

The frontends provide a lo-locked sensor that can be queried through the UHD API.

The transmit and receive filter banks uses switches to select between the available filters. These paths are also dependent on the antenna switch settings. Incorrectly setting the switches generally results in attenuated input / output power. Receive filters are band pass (series high & low pass filters), transmit filters are low pass.

Source code related to controlling the filter band and antenna switches resides in e300\_impl.c. Specifically, refer to methods e300\_impl::\_update\_bandsel, e300\_impl::\_update\_atrs, e300\_impl::\_update\_gpio, and e300\_impl::\_update\_enables. Generally, these methods set the switches depending on the state of transmit and receive streams.

The following sections provide switch setting tables for antenna and filter selection for frontends A & B receive and transmit paths. For futher details refer to the schematics.

Note: X = don't care, T = If full duplex, set bits according to transmit table, otherwise don't care. Filter range A ? B will be selected if A <= freq < B.

#### Receive

| RX Port  | RX Filter (MHz) | VCTXRX2_V1,V2 | VCRX2_V1,V2 | RX2_BANDSEL[2:0] | RX2B_BANDSEL[1:0] | RX2C_BANDSEL[1:0] |
|----------|-----------------|---------------|-------------|------------------|-------------------|-------------------|
| TRX-A    | < 450           | 01            | 10          | 101              | XX                | 01                |
| TRX-A    | 450 - 700       | 01            | 10          | 011              | XX                | 11                |
| TRX-A    | 700 – 1200      | 01            | 10          | 001              | XX                | 10                |
| TRX-A    | 1200 - 1800     | 01            | 10          | 000              | 01                | XX                |
| TRX-A    | 1800 - 2350     | 01            | 10          | 010              | 11                | XX                |
| TRX-A    | 2350 - 2600     | 01            | 10          | 100              | 10                | XX                |
| TRX-A    | 2600 - 6000     | 01            | 01          | XXX              | XX                | XX                |
| RX2-A    | 70 – 450        | TT            | 01          | 101              | XX                | 01                |
| RX2-A    | 450 - 700       | TT            | 01          | 011              | XX                | 11                |
| RX2-A    | 700 – 1200      | TT            | 01          | 001              | XX                | 10                |
| RX2-A    | 1200 – 1800     | TT            | 01          | 000              | 01                | XX                |
| RX2-A    | 1800 - 2350     | TT            | 01          | 010              | 11                | XX                |
| RX2-A    | 2350 - 2600     | TT            | 01          | 100              | 10                | XX                |
|          | >= 2600         | TT            | 10          | XXX              | XX                | XX                |
| Transmit |                 |               |             |                  |                   |                   |
|          |                 |               |             |                  |                   |                   |

| TX Port | TX Filter (MHz) | VCTXRX2_V1,V2 | TX_ENABLE2A,2B | TX_BANDSEL[2:0] |
|---------|-----------------|---------------|----------------|-----------------|
| TRX-A   | < 117.7         | 10            | 01             | 111             |
| TRX-A   | 117.7 – 178.2   | 10            | 01             | 110             |
| TRX-A   | 178.2 - 284.3   | 10            | 01             | 101             |

| TRX-A | 284.3 - 453.7   | 10 | 01 | 100 |
|-------|-----------------|----|----|-----|
| TRX-A | 453.7 - 723.8   | 10 | 01 | 011 |
| TRX-A | 723.8 - 1154.9  | 10 | 01 | 010 |
| TRX-A | 1154.9 - 1842.6 | 10 | 01 | 001 |
| TRX-A | 1842.6 - 2940.0 | 10 | 01 | 000 |
| TRX-A | >= 2940.0       | 11 | 10 | XXX |

Note: Although the transmit filters are low pass, this table describes UHD's tuning range for selecting each filter path. The table also includes the required transmit enable state.

Note: X = don't care, T = If full duplex, set bits according to transmit table, otherwise don't care. Filter range A ? B will be selected if A <= freq < B.

### Receive

| RX Port | RX Filter (MHz) | VCTXRX1_V1,V2 | VCRX1_V1,V2 | RX1_BANDSEL[2:0] | RX1B_BANDSEL[1:0] | RX1C_BANDSEL[1:0] |
|---------|-----------------|---------------|-------------|------------------|-------------------|-------------------|
| TRX-B   | < 450           | 10            | 01          | 100              | XX                | 10                |
| TRX-B   | 450 - 700       | 10            | 01          | 010              | XX                | 11                |
| TRX-B   | 700 – 1200      | 10            | 01          | 000              | XX                | 01                |
| TRX-B   | 1200 – 1800     | 10            | 01          | 001              | 10                | XX                |
| TRX-B   | 1800 - 2350     | 10            | 01          | 011              | 11                | XX                |
| TRX-B   | 2350 - 2600     | 10            | 01          | 101              | 01                | XX                |
| TRX-B   | 2600 - 6000     | 10            | 10          | XXX              | XX                | XX                |
| RX2-B   | 70 - 450        | TT            | 10          | 100              | XX                | 10                |
| RX2-B   | 450 – 700       | TT            | 10          | 010              | XX                | 11                |
| RX2-B   | 700 – 1200      | TT            | 10          | 000              | XX                | 01                |
| RX2-B   | 1200 – 1800     | TT            | 10          | 001              | 10                | XX                |
| RX2-B   | 1800 - 2350     | TT            | 10          | 011              | 11                | XX                |
| RX2-B   | 2350 - 2600     | TT            | 10          | 101              | 01                | XX                |
| RX2-B   | >= 2600         | TT            | 01          | XXX              | XX                | XX                |

#### **Transmit**

| TX Port | TX Filter (MHz) | VCTXRX1_V1,V2 | TX_ENABLE1A,1B | TX1_BANDSEL[2:0] |
|---------|-----------------|---------------|----------------|------------------|
| TRX-B   | < 117.7         | 00            | 01             | 111              |
| TRX-B   | 117.7 – 178.2   | 00            | 01             | 110              |
| TRX-B   | 178.2 – 284.3   | 00            | 01             | 101              |
| TRX-B   | 284.3 - 453.7   | 00            | 01             | 100              |
| TRX-B   | 453.7 – 723.8   | 00            | 01             | 011              |
| TRX-B   | 723.8 - 1154.9  | 00            | 01             | 010              |
| TRX-B   | 1154.9 – 1842.6 | 00            | 01             | 001              |
| TRX-B   | 1842.6 - 2940.0 | 00            | 01             | 000              |
| TRX-B   | >= 2940.0       | 11            | 10             | XXX              |

Note: Although the transmit filters are low pass, the following table describes UHD's tuning range for selecting each filter path. The table also includes the required transmit enable states.

- SSB/LO Suppression -35/50 dBc
   Phase Noise 3.5 GHz 1.0 deg RMS
   Phase Noise 6 GHz 1.5 deg RMS
   Power Output >10dBm
   IIP3 (@ typ NF) -20dBm
   Typical Noise Figure <8dB

- All RF Ports are matched to 50 Ohm with -10dB or better return loss generally. Detailed test is pending.
- Ettus Research recommends to always use the latest stable version of UHD

- Current Hardware Revision: 1
  Minimum version of UHD required: 3.8.0
  Required version on the host computer must match what is running on the E310
- Current Hardware Revision: 1Minimum version of UHD required: 3.8.5
- Required version on the host computer must match what is running on the E312

- E310 0-40 °C • E312 0-40 °C
- 10% to 90% non-condensing

E310 Schematics

E310 DB

E310 Architecture

AD5662RBJ

| Part Number                      | Description                    | Schematic ID (Page)                               |
|----------------------------------|--------------------------------|---------------------------------------------------|
| TXS02612RTWR                     | Motherboard SDIO PORT EXPANDER | U23 (2)                                           |
| XC7Z020-1CLG484CES9919           | FPGA                           | U11 (2,3,4,8,11,13)                               |
| Xilinx Zyng Product Page         | FPGA                           | -                                                 |
| USB3340-EZK-TR                   | ULPI Transceiver               | U33 (5)                                           |
| AK4571VQP                        | Audio CODEC                    | U30 (6)                                           |
| FT230XQ-R                        | UART Interface                 | U32 (6)                                           |
| 88E1512                          | Gigabit Ethernet Transceiver   |                                                   |
| 24LC024/SN                       | EEPROM                         | U5 (9)                                            |
| DS1339,SM                        | Real-Time Clock                | U6 (9)                                            |
| ADT7408                          | Temperature Sensor             | U8 (9)                                            |
| MPU-9150                         | Motion Processing Unit         | U3 (9)                                            |
| InvenSense MPU-9150 Product Page | Motion Processing Unit         | U3 (9)                                            |
| BMP180                           | Digital pressure sensor        | U4 (9)                                            |
| BQ24192                          | Adapter Charger                | U1 (10)                                           |
| TPS54478                         | Step-Down Switcher             | U20 (10)                                          |
| MAX6510HAUT-T                    | Temperature Switches           | U35 (10)                                          |
| ATTINY88-MU                      | Microcontroller                | U18 (10)                                          |
| TPS61253YFF                      | Step-Up Converter              | U19 (10)                                          |
| AMY-6M                           | GPS Module                     | U12 (6)                                           |
|                                  | Daughterboard                  | • •                                               |
| Part Number                      | Description                    | Schematic ID (Page)                               |
| AD9361 Product Page              | 2 x 2 RF Agile Transceiver     | U8 (3)                                            |
| 24AA256                          | EEPROM                         | U15 (2)                                           |
| TC-1-43A+                        | RF Transformer                 | T6 (3); T5 (3); T4 (3)                            |
| TC1-1-13M+                       | RF Transformer                 | T7 (3); T10 (3); T1 (3)                           |
| TPS62140                         | Step-Down Converter            | U19 (4)                                           |
| ADP1753ACPZ-R7                   | Linear Regulator               | U17 (4); U18 (4)                                  |
| SGA-4563Z                        | MMIC AMPLIFIER                 | U12 (5); U4 (5)                                   |
| SKY13418-485LF                   | Antenna Switch                 | U13 (5); U3 (5); U16 (5); U2 (5); U10 (6); U5 (6) |
| SKY13373-460LF                   | SP3T Switch                    | U11 (6); U9 (6); U6 (6); U7 (6); SW4 (7); SW1 (7) |
| MGA-81563                        | Amplifier                      | U14 (5); U1 (5)                                   |
| LFCN-5850+                       | Low Pass Filter                | FL32 (5); FL1 (5)                                 |
| LFCN-2750+                       | Low Pass Filter                | FL37 (5); FL4 (5)                                 |
| LFCN-2250+                       | Low Pass Filter                | FL23 (6); FL20 (6)                                |
| LFCN-1700+                       | Low Pass Filter                | FL40 (5); FL2 (5)                                 |
| LFCN-1575+                       | Low Pass Filter                | FL25 (6); FL17 (6)                                |
| LFCN-1000+                       | Low Pass Filter                | FL33 (5); FL9 (5); FL27 (6); FL15 (6)             |
| LFCN-575+                        | Low Pass Filter                | FL36 (5); FL5 (5)                                 |
| LFCN-530+                        | Low Pass Filter                | FL29 (6); FL13 (6)                                |
| LFCN-400+                        | Low Pass Filter                | FL38 (5); FL3 (5); FL30 (6); FL11 (6)             |
| LFCN-225                         | Low Pass Filter                | FL39 (5); FL6 (5)                                 |
| LFCN-160+                        | Low Pass Filter                | FL34 (5); FL8 (5)                                 |
| LFCN-80+                         | Low Pass Filter                | FL35 (5); FL7 (5)                                 |
| HFCN-1600+                       | High Pass Filter               | FL22 (6); FL19 (6)                                |
| HFCN-1100+                       | High Pass Filter               | FL24 (6); FL16 (6)                                |
| HFCN-650+                        | High Pass Filter               | FL26 (6); FL14 (6)                                |
| HFCN-440+                        | High Pass Filter               | FL28 (6); FL12 (6)                                |
| BFCN-2435+                       | Bandpass Filter                | FL21 (6); FL18 (6)                                |
| FDG6301N                         | Dual N-Channel, Digital FET    |                                                   |
| HSMS-8202                        | Mixer Diodes                   | CR1 (7); CR2 (7); CR3 (7); CR4 (7)                |
| LP5900TL                         | Linear Regulator               | U25 (8)                                           |
| ADP150AUJZ-3.0                   | Linear Regulator               | U22 (8)                                           |

16-Bit nanoDAC

U21 (8)

SN74AUP1T57 Voltage Translator U27 (8); U28 (8); U29 (8)

Request a detailed whitepaper covering features and components from info@ettus.com

- Partial Enclosure 225 g
- Full Enclosure 375 g
- File:E310 Dimensional Sketches.pdf
- File:cu e310 motherboard cca.pdf
- File:cu E310 daughtercard cca.pdf
- File:cu usrp-e310.pdf
- File:cu e312 motherboard cca.pdf
  File:cu e312 daughtercard cca.pdf
  File:cu ettus-e312.pdf
- Utilization statistics are subject to change between UHD releases. This information is current as of UHD 3.9.4 and was taken directly from Xilinx Vivado 2014.4.

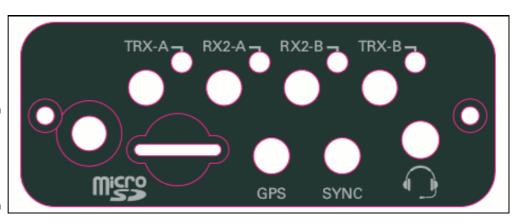
### 1. Slice Logic

|   |                                                                                                                                                              | _ |                                                                     |     |                                                                         |   |                                                                   |     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------|-----|-------------------------------------------------------------------------|---|-------------------------------------------------------------------|-----|
| ļ | Site Type                                                                                                                                                    | 1 | Used                                                                |     | Available                                                               |   | Util%                                                             | İ   |
| + | Slice LUTs LUT as Logic LUT as Memory LUT as Distributed RAM LUT as Shift Register Slice Registers Register as Flip Flop Register as Latch F7 Muxes F8 Muxes | + | 36203<br>28108<br>8095<br>870<br>7225<br>36562<br>36562<br>0<br>376 | -+  | 53200<br>53200<br>17400<br>106400<br>106400<br>106400<br>26600<br>13300 | + | 68.05<br>52.83<br>46.52<br>34.36<br>34.36<br>0.00<br>1.41<br>0.93 |     |
| : |                                                                                                                                                              |   |                                                                     | - 1 |                                                                         | 1 |                                                                   | - 1 |

#### 3. Memory

| +              | -+ |      | +         | ++    |
|----------------|----|------|-----------|-------|
| Site Type      | J  | Jsed | Available | Util% |
| +              | -+ |      | +         | ++    |
| Block RAM Tile |    | 97   | 140       | 69.28 |
| RAMB36/FIFO*   |    | 90   | 140       | 64.28 |
| RAMB36E1 only  |    | 90   |           | 1     |
| RAMB18         |    | 14   | 280       | 5.00  |
| RAMB18E1 only  |    | 14   |           | 1     |

\* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate only one FIFO36E1 or one FIFO18E1. However, if a


# 4. DSP

| +            | -+   | +         | -++   |
|--------------|------|-----------|-------|
| Site Type    | Used | Available | Util% |
| +            | -+   | +         | -++   |
| DSPs         | 120  | 220       | 54.54 |
| DSP48E1 only | 120  | ĺ         | i i   |
| +            | -+   | +         | -++   |

- 10/100/1000 BASE-T Ethernet
- Stereo audio out, mono mic in
- Integrated GPS receiver
   Host USB support
- 9-axis IMU
- RF A Group TX/RX LED: Indicates that data is streaming on the TX/RX channel on frontend side A
  - ◆ RX2 LED: Indicates that data is streaming on the RX2 channel on frontend side A
- RF B Group

   TX/RX LED: Indicates

  that data is streaming that data is streaming on the TX/RX channel
  - on frontend B ◆ RX2 LED: Indicates that data is streaming on the RX2 channel on frontend B
- PWR: Power switch with integrated status LED, for status



- description see below.
- SYNC: Input port for external PPS signal
   GPS: Connection for the GPS
- antenna
   AUDIO: Audio input / output

The status LED in the power switch indicates the power and charge status. It's behavior is firmware version dependent.

- Version 1 (original E310) ◆ Off: Indicates device is off and not charging
  - ◆ Solid Red: Indicates device is charging
  - ◆ Solid Green: Indicates device is on
  - ◆ Fast Blinking Red:

Indicates an error code

\$\delta\$ 1 - Low

voltage error ◊ 2 - Regulator low voltage

error ◊3 - FPGA

power error \$\delta 4 - DRAM\$

power error \$\delta 5 - 1.8V rail power error

♦ 6 - 3.3V rail

o.ov rail power error ◊ 7 -

Daughterboard / TX power error

◊9 -

Temperature error

• Version 2 (E312 and upgraded

- ◆ Off: Indicates device is
- off and not charging
   Slow Blinking Green: Indicates device is off
- and charging

  Fast Blinking Green: Indicates device is on and charging
- Solid Green: Indicates device is on (and not charging, if E312)

  Solid Orange:
- Indicates device is on
- and discharging

  Fast Blinking Orange: Indicates device is on, discharging, and charge is below 10% charge
- ◆ Fast Blinking Red: Indicates an error code

♦ 1 - Low

voltage error 2 - Regulator

low voltage

error ◊3 - FPGA

power error

power error

♦ 5 - 1.8V rail

power error ◊ 6 - 3.3V rail

o.ov rail power error ◊7 -

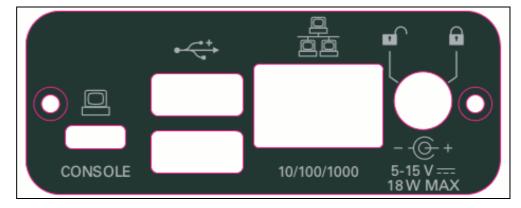
, Daughterboard / TX power

error ◊8 - Charger

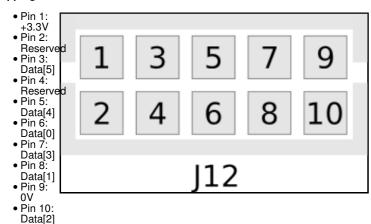
error

♦ 9 - Charger temperature

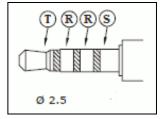
error ♦ 10 - Battery


low error ◊ 11 - Fuel

Gauge


temperature

error ♦ 12 - Global (case) température error


- PWR: Locking connector (Kycon KLDHCX-0202-A-LT) for the USRP-E Series power supply
- 1G ETH: RJ45 port for Ethernet interfaces
- USB: USB 2.0 Port
   SERIAL: Micro USB connection for serial uart console



### Pin Mapping



- Please see the E3x0/X3x0 GPIO API for information on configuring and using the GPIO bus.
- The E3x0 2.5 mm Audio Jack TRRS pins are assigned as follows: Tip=Mic, Ring1=Right, Ring2=Left, Sleeve=GND.
- The Left/Right audio outputs are compatible with typical low-impedance headphones (16 to 32 Ohms). The Microphone pin provides approximately 2 mA bias at 2.2 V when not suspended. A variety of pin configurations can be found on commonly available headsets, so an adapter may be required.



The USRP E312 is equipped with an integrated 3.7V, 3200mAh lithium-ion battery cell. After unboxing the USRP E312, plug in the power adapter to an AC power source and fully charge the battery. This process with take approximately 2 hours. Do not leave the USRP E312 unit plugged in for more than

The status LED in the power button indicates the power and charge status of the battery:

Off: Indicates device is off and not charging.

- Slow Blinking Green: Indicates device is off and charging.
- Fast Blinking Green: Indicates device is on and charging.
  Solid Green: Indicates device is on and charging (Battery is finished charging).
- Solid Orange: Indicates device is on and discharging.
  Fast Blinking Orange: Indicates device is on, discharging, and charge is below 10% charge.
  Fast Blinking Red: Indicates an error code:

- Low Voltage Error
   Regulator Low Voltage Error
   FPGA Power Error
   DRAM Power Error
   1.8V Power Rail Error
   3.3V Power Rail Error
   Daughterboard / TX Power Error
   Charger Error
- Charger Error
- 9. Charger Temperature Error
- 10. Battery Low Error
- 11. Fuel Gauge Temperature Error
- 12. Global (Enclosure) Temperature Error

The battery life of the USRP E312 in idle mode is approximately 5 1/2 hours. The battery will enable the USRP E312 to operate for approximately 2 hours 20 minutes, when transmitting and receiving on both channels (2x2 MIMO), with maximum gain settings, at 5 GHz center frequency, and 1 MS/s sample rate. When the power button status LED is in the ?Fast Blinking Orange? mode, plug the USRP E312 into an AC power source as soon as possible to recharge the battery.

If the power button status LED indicates a ?Low Voltage Error? (codes 1, 2, 3, 4, 5, 6, 7) or a ?Battery Low Error? (code 10), plug the USRP E312 into an AC power source as soon as possible to recharge the battery.

When the power button status LED indicates at ?Temperature Error? or ?Charger Error? (codes 8, 9, 11, or 12), power off the USRP E312 unit and allow it to cool down to room temperature. Then, plug in the USRP E312 to and AC power source and fully charge the battery.

If error codes persist after cooling down and/or recharging the USRP E312, please contact support@ettus.com.

You can purchase a replacement battery for the E312 at https://www.ettus.com/product/details/E312-battery.

An Application Note covering the replacement of the E312 battery can be found at USRP E312 Battery Replacement Instructions.

As of December 1st, 2010 all Ettus Research products are RoHS compliant unless otherwise noted. More information can be found at http://ettus.com/legal/rohs-information

- Media:volatility USRP E310 r1.pdf
- Media:USRP E31x CoV.pdf

The E31x SD card images can be obtained two ways:

- Using uhd\_images\_downloader. See these instructions: https://files.ettus.com/manual/page\_usrp\_e3xx.html#update\_sdcard
- Direct download from https://files.ettus.com/binaries/cache/e3xx/

**Note:** Obsolete images, such as the alpha, beta, and Release 4 images, are located here: https://files.ettus.com/e3xx\_images/. These release are no longer supported and provided here for archival purposes only.

If choosing to directly download the SD card image, please note that they are sorted by UHD version with the format meta-ettus-vUHD\_VERSION. For example, the UHD 4.5 release is meta-ettus-v4.5.0.0. Each release contains SD card images and the SDK (OE cross-compiler build environment) for the USRP E31x. There is a manifest file that shows which packages, and which versions, are included in the OE build within each folder.

We highly recommend customers use UHD 4.5 or later. It is fine if you are already successfully using an older version, but at some point it is recommended that you upgrade to a current version so that you benefit from the latest bug fixes, new features, stability improvements, and other enhancements.

The UHD 4.5+ release images include UHD 4.5 (or later), GNU Radio 3.8, Python 3, and the corresponding FPGA image file.

Note: An 8 GB SD card is required for the Release 4 image.

The SD card image contains both the FPGA image and the OS for the E31x. The FPGA image is located in the file system of the E31x in the /usr/local/share/uhd/images directory.

The E31x image comes in two speed grade varieties, sg1 and sg3. The majority of USRP E31x devices use the sg3 image, but older devices may use sg1. The version that you will need depends on the product number of your E31x, which is printed on the bottom of the device.

For the E310, the product number will be 156333x-01L, where X is a letter from A to Z. For devices where X is A, B, C, D, the image starting with e3xx\_e310\_sg1 should be used. For devices where X is E or later, the images under the e3xx\_e310\_sg1 folder should be used. You must use the appropriate image for your specific device. The incorrect image will not work, and will only boot as far as the U-Boot boot loader before stopping.

For the E312, the product number will be 140605x-01L, where X is a letter from A to Z. The image starting with e3xx\_e310\_sg3 folder should be used for all E312 devices.

You can burn the image to an SD card using the "da" tool. Instructions on how to use this tool are located at the links below:

- https://files.ettus.com/manual/page\_usrp\_e3xx.html#e3xx\_sdcard
- https://kb.ettus.com/Writing\_the\_USRP\_File\_System\_Disk\_Image\_to\_a\_SD\_Card

The SD image files have an \*.zip extension. You can uncompress these files with any zip compatible tool, such as 7-Zip. Please see the links below for further information.

### 7-Zip

- http://www.7-zip.org/
- https://en.wikipedia.org/wiki/7-Zip

The OpenEmbedded project reported a security vulnerability for OE-Core

(http://lists.openembedded.org/pipermail/openembedded-architecture/2017-June/000638.html). If you are an USRP E-Series user that is building binary ipkgs which you then distribute to your customers, you may be affected by this issue. No other workflows are impacted.

The vulnerability is documented as CVE-2017-9731 (https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-9731). The specific issue is that information in the SRC\_URI for software repositories used by OE recipes is "leaked" by binary ipkgs. For example, if you are using the E-Series OE-generated SDK to build binary ipkgs, and the URI you use for your source code repository contains sensitive information (e.g.,

https://github.com/company-name/secret-project-name, or local-server.internal.com?USER=admin@PASSWORD=password), then that information will be leaked in the Source: field of the ipkg.

The OpenEmbedded team has merged a fix for this into OE-Core master, and backported the change to previous versions of OpenEmbedded. Generally, including sensitive information in the src\_uris is not a good idea, and we highly recommend users avoid doing this in their build process. Some recommendations provided on the OpenEmbedded discussion list:

- Use non-confidential path names (i.e., don?t include confidential customer or project names in build paths).
   Change or manage the host name of your build system so that it is non-confidential, like build-1 instead of
- secret-product.my-company.internal.com.

   Use a "build user" who does not have network credentials to access sensitive machines during the build process.

If you have any questions about this, or need help determining if this issue affects you, please let us know by contacting support@ettus.com.

• COMPASS HEADING USING MAGNETOMETERS

**FPGA Images** 

FPGA Images Read Me

**FPGA Resources** 

**UHD Stable Binaries** 

UHD Source Code on Github