OAIl Reference Architecture for 5G and 6G Research with USRP

Contents

e 1 Authors
e 2 Application Note Number
e 3 Abstract
e 4 NI Part Numbers
e 5 Overview of the USRP N300 and N310
e 6 Overview of the USRP N320 and N321
e 7 Overview of the USRP X410
* 8 Overview of the OpenAirinterface (OAl) Software Stack
® 9 Overview of the Reference Architecture
* 10 Bill of Materials (BoM)
e 11 Hardware Requirements

+ 11.1 Host Computers

011.1.1 CPU

.2 Disk

3

4

.5 10 Gbps Ethernet network card

.6 QSFP28-to-SFP28 Breakout Cable for USRP X410
.7 Example Systems

USRP Devices

OctoClock-G

O 11
O 11
Q11
O 11
O 11
O 111

¢ 12.4 DPDK
e 13 Installing and Configuring the UHD Software
¢ 14 Installing and Configuring the USRP Radio
+ 14.1 For the USRP N300 and N310
¢ 14.2 For the USRP N320 and N321
+ 14.3 For the USRP X410
® 15 Configuring the Ubuntu Linux Operating System
® 16 Configuring the BIOS for gNB and UE Systems
¢ 17 Installing, Configuring, and Running the CN System
+ 17.1 Prerequisites for the Scenario 1 Minimalist Deployment
7.2 Pull Base Images
7.3 Pulling the images from Docker Hub
7.4 Synchronizing the installed images
7.5 Configure the Containers
7.6 Deploy the containers
7.7 Installing docker-compose and Wireshark
7.8 Invoking the Core Network
7.

R 2R 2R 2R 2R 2% 2% 2% 2

1
1
1
1
1
1
1
17.9 Stopping the Core Network

ng, Configuring, and Running the gNB System
1

1

1

1

1

1

1

1

1

¢ 18 Installi
8.1 Building and installing the gNB software
8.2 Editing the gNB configuration file
8.3 Specifying the AMF IP address
8.4 Specifying the gNB IP address
8.5 Specifying the USRP IP address
8.6 Adding a static route to the CN system
8.7 Invoking the gNB
8.8 Interfaces Between gNB and Core Network
8.9 Testing Connectivity Between gNB and CN
mg, Configuring, and Running the UE System
19.1 UE Scenario 1: USRP
¢ 19.1.1 Building and installing the OAIl softmodem software
¢ 19.1.2 Editing the UE Configuration File
¢ 19.1.3 Invoking the OAI UE softmodem
9.1.4 Verify that the UE was connected to the gNB
enario 2: 5G Wireless Modem Module
9.2.1 Configuring the SIM Card
9.2.2 Serial Connection to the Module via Minicom
9.2.
9.

R 2R 2R 2R 2R 2R 2R 2% 2 2

® 19 Installi

*

3 AT Commands for the Module
2.4 Verifying the Operation with Wireshark
¢ 19.2.5 Verifying the Operation with AT Commands
+ 19.3 UE Scenario 3: COTS Handset
® 20 End-to-End Verification
¢ 20.1 Using ping
¢ 20.2 Using iperf
¢ 20.2.1 Downlink
¢ 20.2.2 Uplink
e 21 Technical Support
+ 21.1 USRP Mailing List
+ 21.2 OAIl Mailing List
¢ 21.3 Email

01
Sc
01
01
01
01

Neel Pandeya, Bharat Agarwal, Gerardo Trevino

AN-956



This Application Note presents a reference design for using the Eurecom OpenAirinterface (OAl) software stack to implement 5G NR Stand-Alone (SA)
systems on the USRP N300, N310, N320, N321, X410 radio devices. The reference design covers the base station (gNB), the user equipment (UE),
and the Core Network (CN) components of the network. Three types of UE are used: a UE running on a USRP radio; a wireless modem module UE;
and a commercial (COTS) handset/phone. The reference design supports operation in Frequency Range 1 (FR1), and support for operation in FR2 will
be added at a future date. The various aspects of installing, configuring, and running the hardware and software components of the network are
discussed in detail, along with a discussion of expected results, methods to benchmark and monitor the system, and troubleshooting steps.

The solution brochure for the OAI Reference Architecture for 5G and 6G Research with the USRP can be downloaded

An overview of using OAI Software for 5G and 6G research at this

You can learn more about other solutions for 5G and 6G Wireless Research and Prototyping at the

The table listed below shows the contents of several pre-configured bundles that can serve as a useful starting point for the OAl USRP Reference
Architecture, which can be ordered using the corresponding NI part number. For more information about these bundles, please contact us at
sales@ni.com.

Pre-Configured Bundles for the OAl USRP Reference Architecture

P/N System Name Description

* OAl Welcome Card
¢ USRP X410 (4 TX and 4 RX, 400 MHZ BW, 1 MHz to 7.2 GHz
SDR, GPSDO)

868063-01 USRP X410 OAI Bundle For 5G and 6G Research Base

¢ OAl Welcome Card

e USRP X410 (4 TX and 4 RX, 400 MHZ BW, 1 MHz to 7.2 GHz
SDR, GPSDO)

e Dual 100 Gbps Ethernet PCle Interface Kit for Ettus USRP X4xx

¢ QSFP28-t0-4xSFP28 Breakout Cable, 1 m

e VERT2450 Vertical Antenna (2.4 to 2.5 and 4.9 to 5.9 GHz)
Dual-Band

* SMA Male to SMA Male Cable, 50 Ohm, 1 m

USRP X410 OAI Bundle For 5G and 6G Research

868063-02 Standard

¢ OAl Welcome Card
¢ USRP N310 (ZYNQ-7100, 4 Channel, 10 MHz to 6 GHz, 10 Gbps
Ethernet)

868063-03 USRP N310 OAIl Bundle For 5G and 6G Research Base

¢ OAl Welcome Card
¢ USRP N310 (ZYNQ-7100, 4 Channel, 10 MHz to 6 GHz, 10 Gbps
Ethernet)

gonr 1310 OAI Bundle For 5G and 6G Research « Dual 100 Gbps Ethernet PCle Interface Kit for Ettus USRP Xdxx
¢ 10 Gbps SFP+ Ethernet Cable, 3 m

o VERT2450 Vertical Antenna (2.4 to 2.5 and 4.9 to 5.9 GHz)

Dual-Band
¢ SMA Male to SMA Male Cable, 50 Ohm, 1 m

868063-04

¢ OAl Welcome Card
¢ USRP N321 (Non-TPM, 2 TX/RX Channels, 200 MHz BW, with LO
Distribution)

868063-05 USRP N321 OAIl Bundle For 5G and 6G Research Base

868063-06 USRP N320 OAIl Bundle For 5G and 6G Research Base * OAl Welcome Card
¢ USRP N320 (Non-TPM, 2 TX/RX Channels, 200 MHz BW)

The USRP N300 and N310 are a networked software defined radio that provides reliability and fault-tolerance for deployment in large scale and
distributed wireless systems. This device simplifies control and management of a network of radios by introducing the unique capability to remotely
perform tasks such as debugging, updating software, rebooting, factory resetting, self-testing, and monitoring system health. The USRP N310 is an
all-in-one device that includes two AD9371 transceivers, the Zyng-7100 SoC baseband processor, two SFP+ ports, a built-in GPSDO module, and
various other peripheral and synchronization features.

The N300 features:

e Xilinx Zyng-7035 FPGA
SoC

¢ Dual-core ARM A9 800
MHz CPU

e 2 RX, 2TX in half-wide RU
form factor

¢ 10 MHz ? 6 GHz extended
frequency range

e Up to 100 MHz of
instantaneous bandwidth
per channel

e RX, TX filter bank

* 16 bit ADC, 14 bit DAC

¢ Configurable sample rates:
122.88, 125, and 153.6
MS/s

e Two SFP+ ports (1 GbE, 10
GbE, )

* RJ45 (1 GbE)

¢ 10 MHz clock reference

* PPS time reference

 Built-in GPSDO

¢ 1 Type A USB host port


https://www.ni.com/en/forms/oai-reference-architecture-brochure.html
https://www.ni.com/en/solutions/electronics/5g-6g-wireless-research-prototyping/research-6g-technologies-using-openairinterface-software.html
https://www.ni.com/en/solutions/electronics/5g-6g-wireless-research-prototyping.html
https://kb.ettus.com/Aurora

¢ 1 micro-USB port (serial
console, JTAG)

e Watchdog timer

e OpenEmbedded Linux

e High channel density

¢ Reliable and fault-tolerant
deployment

¢ Remote management
capability

e Stand-alone operation

¢ USRP N300 does not
contain a Trusted Platform
Module

The N310 features:

« Xilinx Zyng-7100 FPGA
)

oC

¢ Dual-core ARM A9 800
MHz CPU

* 4 RX, 4TX in half-wide RU
form factor

¢ 10 MHz ? 6 GHz extended
frequency range

e Up to 100 MHz of
instantaneous bandwidth
per channel

o RX, TX filter bank

¢ 16 bit ADC, 14 bit DAC

¢ Configurable sample rates:
122.88, 125, and 153.6
MS/s

e Two SFP+ ports (1 GbE, 10
GbE, )

¢ RJ45 (1 GbE)

¢ 10 MHz clock reference

¢ PPS time reference

e External RX, TX LO input
ports

¢ Built-in GPSDO

¢ 1 Type A USB host port

¢ 1 micro-USB port (serial
console, JTAG)

e Trusted Platform Module
(TPM) vi1.2

¢ Watchdog timer

* OpenEmbedded Linux

¢ High channel density

¢ Reliable and fault-tolerant
deployment

¢ Remote management
capability

o Stand-alone operation

For more detailed technical
information about the USRP N300
and N310, please reference the

For more information about getting
started with the USRP N300 and
N310, please reference the



https://kb.ettus.com/File:n300_kit.jpg
https://kb.ettus.com/Aurora
https://kb.ettus.com/N320/N321
https://kb.ettus.com/N320/N321
https://kb.ettus.com/USRP_N300/N310/N320/N321_Getting_Started_Guide
https://kb.ettus.com/File:n310_kit.png

The USRP N320 and N321 are a networked software defined radio that provides reliability and fault-tolerance for deployment in large scale and
distributed wireless systems. This is a high performance SDR that uses a unique RF design by Ettus Research to provide 2 RX and 2 TX channels in a
half-wide RU form factor. Each channel provides up to 200 MHz of instantaneous bandwidth, and covers a frequency range from 3 MHz to 6 GHz. The
baseband processor uses the Xilinx Zyng-7100 SoC to deliver a large user programmable FPGA for real-time, low latency processing and a dual-core
ARM CPU for stand-alone operation.Support for 1 GbE, 10 GbE, and Aurora interfaces over two SFP+ ports and 1 QSFP+ port enables high throughput
1Q streaming to a host PC or FPGA coprocessor. A flexible synchronization architecture with support for LO sharing for TX and RX, 10 MHz clock
reference, PPS time reference, GPSDO, and White Rabbit enables implementation of phase coherent MIMO testbeds. The USRP N320 leverages
recent software developments in UHD to simplify control and management of multiple devices over the network with the unique capability to remotely
administrate tasks such as debugging, updating software, rebooting, resetting to factory state, and monitoring system health.

The USRP N320 features:

e Xilinx Zyng-7100 FPGA
SoC

e Dual-core ARM A9 800
MHz CPU

¢ 2 RX, 2 TX in half-wide RU
form factor

¢ 3 MHz ? 6 GHz frequency

range

e Up to 200 MHz of
instantaneous bandwidth
per channel

e Sub-octave RX, TX filter

bank
¢ 14 bit ADC, 16 bit DAC _
¢ Configurable sample rates:

200, 245.76, 250 MS/s
* Two SFP+ ports (1 GbE, 10

GbE, , White Rabbit) -

* One QSFP+ port ( 2x 10Gb ol
/ e
* RJ45 (1 GbE

)
e 10 Ml‘%Z cIock) reference é g o £ =
* PPS time reference " -
e External RX, TX LO input
ports
¢ Built-in GPSDO
¢ 1 Type A USB host port

¢ 1 micro-USB port (serial
console, JTAG)

¢ Trusted Platform Module
(TPM) vi.2

e Watchdog timer

e OpenEmbedded Linux

¢ Reliable and fault-tolerant
deployment

¢ Remote management
capability

o Stand-alone operation

The USRP N321 features:

¢ Xilinx Zyng-7100 FPGA
SoC

e Dual-core ARM A9 800
MHz CPU

¢ 2 RX, 2 TX in half-wide RU
form factor

¢ 3 MHz ? 6 GHz frequency

range
« Up to 200 MHz of
instantaneous bandwidth -
per channel 4‘."“&
e Sub-octave RX, TX filter
bank

¢ 14 bit ADC, 16 bit DAC

¢ Configurable sample rates:
200, 245.76, 250 MS/s

e Two SFP+ ports (1 GbE, 10
GbE, , White Rabbit)

* One QSFP+ port ( 2x 10Gb
/

e RJ45 (1 gabE)

* 10 MHz clock reference

* PPS time reference

e External RX, TX LO input
ports

¢ L O Distribution for up to
128x128 MIMO

¢ Built-in GPSDO

¢ 1 Type A USB host port

¢ 1 micro-USB port (serial
console, JTAG)

e Trusted Platform Module
(TPM) vi1.2

e Watchdog timer


https://kb.ettus.com/USRP_N300/N310/N320/N321_Getting_Started_Guide
https://kb.ettus.com/Aurora
https://kb.ettus.com/Aurora
https://kb.ettus.com/File:n320_kit.png
https://kb.ettus.com/Aurora
https://kb.ettus.com/Aurora
https://kb.ettus.com/File:n321_kit.png

e OpenEmbedded Linux

¢ Reliable and fault-tolerant
deployment

¢ Remote management
capability

¢ Stand-alone operation

For more detailed technical
information about the USRP N320
and N321, please reference the

For more information about getting
started with the USRP N320 and
N321, please reference the

The USRP X410 is a high-performance, multi-channel software defined radio. The SDR is designed for frequencies from 1 MHz to 7.2 GHz, tunable up
to 8 GHz and features a two-stage superheterodyne architecture with 4 independent TX and RX channels capable of 400 MHz of instantaneous
bandwidth each. Digital interfaces for data offload and control include two QSFP28 interfaces capable of 100 GbE[1], a PCle Gen3 x8 [3] interface, as
well standard command, control, and debug interfaces: USB-C JTAG, USB-C console, Ethernet 10/100/1000. The USRP X410 is an all-in-one device
built on the Xilinx Zynqg Ultrascale+ ZU28DR RF System on Chip (RFSoC) with built-in digital up and down conversion and onboard Soft-Decision
Forward Error Correction (SD-FEC) IP.

The USRP X410 features:

¢ High channel density

¢ Reliable and fault-tolerant
deployment

o Stand-alone (embedded) or
host-based (network
streaming) operation

e Fully integrated and
assembled (the USRP X410
does not support swappable
daughtercards) —

e1MHzto 7.2 GHz
frequency range (tunable up
to 8GHz)

e Up to 400 MHz of =
instantaneous bandwidth
per channel

¢ 4 RX, 4 TX in half-wide RU
form factor

e Xilinx Zyng-Ultrascale+
ZU28DR RFSoC

¢ 12 bit ADC, 14 bit DAC

¢ |Q Sample Clock rates up to
500 MS/s

* Onboard SD-FEC, DDC,
DUC

e Quad-core ARM
Cortex-A53 up to 1.2 GHz
CPU

e Dual-core ARM Cortex-A5
MPCore up to 500 MHz

e Two QSFP28 ports (10
Gigabit Ethernet, 100
Gigabit Ethernet, Aurora)

* Two iPass+? zHD®
Interfaces (PCle Gen3 x 8)

e RJ45 (1 GbE) [1]

¢ 10 MHz Clock reference

¢ PPS time reference

¢ Trig In/Out Interface

 Built-in GPSDO

e Two FPGA Programmable
GPIO Interfaces (HDMI)

¢ 1 Type C USB host port

¢ 1 Type C USB port (serial
console, JTAG)

e Watchdog timer

e OpenEmbedded Linux

¢ USRP Hardware Driver?
(UHD) open-source
software API version 4.1.0
or later

¢ RF Network on Chip
(RFNoC?) FPGA
development framework

o Xilinx Vivado® 2019.1
Design Suite (license not
included)

¢ GNU Radio support
maintained by Ettus
Research? through
GR-UHD, an interface to
UHD distributed by GNU
Radio


https://kb.ettus.com/N320/N321
https://kb.ettus.com/N320/N321
https://kb.ettus.com/USRP_N300/N310/N320/N321_Getting_Started_Guide
https://kb.ettus.com/USRP_N300/N310/N320/N321_Getting_Started_Guide
https://kb.ettus.com/File:X410.jpg

¢ [1] The RJ45 port is used
for remote management of
the device and does not
support 1Q streaming.

For more detailed technical
information about the USRP X410,
please reference the X410 Hardware
Resource Page.

For more information about getting
started with the USRP X410, please

reference the X410 Getiing Started
Guide.

The OpenAirinterface (OAl) software provides an open-source, standards-compliant implementation of a 3GPP 5G NR stack that runs on a commodity
x86 CPU and a USRP radio device. OAl was initially developed by Eurecom, which is a university in France. It is now managed and developed by the
OpenAirinterface Software Alliance (OSA), which is a French non-profit organization that provides open-source software and tools for 4G and 5G
wireless research. Further information can be found on the Eurecom website.
The OAI software provides a 5G NR implementation that runs in real-time and is capable of operating with commercial 5G NR handsets (UEs). The OAI
software includes implementations of the gNB, the UE, and the Core Network (CN). Further information can be found on the OAIl website and their
GitLab repository, listed below.

¢ OpenAirinterface 5G Radio Access Network Project

¢ OAI GitLab Repository

* OAl 5G Core Network

¢ OAI-CN GitLab repository
The availability of OAIl source code is free for non-commercial and academic research purposes. More information about licensing can be found on the
OAl website at here and here.

The diagram below shows the layout and architecture of this 5G OAl USRP reference architecture.

OAl gNB (Monolithic)

UHD 4.2.0

0S: Ubuntu 20.04

CPU: Intel core i9-10940x, 14 cores,
3.30 GHz

Low Latency Kernel: 5.4.0-128

OAIl CN Version: v1.3

-

Cuectel RM500QGL (COTS UE)
05%: Ubuntu 20.04

Low Latency Kernel: 5.13.0-40-lo
CPU: Intel Core i7-4790 4 cores, |
Quectel Firmware: RM500QGL.

OAl Core Network

0S: Ubuntu 20.04

CPU: Intel i7-4770, 4 cores, 3.40
GHz

Generic Kernel: 5.15.0-50 generic
OAl CN Version: v1.3

Backhaul Internet



https://kb.ettus.com/X410
https://kb.ettus.com/X410
https://kb.ettus.com/USRP_X410_Getting_Started_Guide
https://kb.ettus.com/USRP_X410_Getting_Started_Guide
http://openairinterface.eurecom.fr/
https://openairinterface.org/oai-5g-ran-project/
https://gitlab.eurecom.fr/oai/openairinterface5g/
https://openairinterface.org/oai-5g-core-network-project/
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-amf/-/wikis/home
https://openairinterface.org/legal/oai-license-model/
https://openairinterface.org/legal/oai-public-license/
https://kb.ettus.com/File:Drawing1.png

The diagram below shows the RF cable connections between the USRP X410 and the Quectel wireless modem module.

Quectel Wireless
Module

e =

UE System

The diagram below shows the software layout and architecture across the Core Network, gNodeB, and UE systems.

App

Running on x86/linux
(docker containers)

Running or

The photos below show one physical implementation of the reference architecture in the office of the authors. Note that this is not the sole valid system
implementation, but it is one of many possible valid system implementations.


https://kb.ettus.com/File:Drawing0.png
https://kb.ettus.com/File:Drawing2.png

Quectel UE System

Quectel UE Module

Intel x86 gNB and CN Systems



https://kb.ettus.com/File:Photo_of_system_1.JPG



https://kb.ettus.com/File:Photo_of_system_2.JPG

2-way RF Splitter

4-way RF Splitter



https://kb.ettus.com/File:Photo_of_system_3.JPG



https://kb.ettus.com/File:Photo_of_system_4.JPG

Quecte

-
-
-
L]
L}
-
"
=
L]
L ]
&



https://kb.ettus.com/File:Photo_of_system_5.JPG

USRP X410

Pigtail MHF4-to-5MA RF Cables

UsSE 3.0 f M.2 Carrier Board

S Card

Reader/Writer Quectel Module



https://kb.ettus.com/File:Photo_of_system_6.JPG
https://kb.ettus.com/File:Photo_of_system_7.JPG

USE 3.0 / M.2 Carrier Board

Ouectel Module

The full Bill of Materials (BoM) for the reference design is listed below. The BoM includes all the hardware components for the multiple system
configuration scenarios, where the USRP N300, N310, N320, N321, X410 can be used for the gNB and the UE system, and the UE itself can be
implemented with a USRP device, or with a wireless modem module, or with a COTS handset.

e Three desktop computers, with Intel Core i9 CPU, of 10th, 11th, or 12th Generation, with clock speed of minimum 4.0 GHz, with minimum 10
physical cores, and also with only NVMe disk drives. See further details about this item in the Hardware Requirements section.

e Two 10 Gbps Ethernet networks cards. We recommend the Intel X710-DA2 and the Nvidia/Mellanox MCX4121A-ACAT ConnectX-4 network
cards. See further details about this item in the Hardware Requirements section.

e Two USRP devices. The USRP may be any of USRP N300, N310, N320, N321, X410. There will be one USRP for the gNB, and one USRP
for the UE. The USRP devices can be mixed (i.e., the gNB could run with a USRP X410, while the UE runs with a USRP N310).

¢ https:/kb.ettus.com/N300/N310

¢ https://kb.ettus.com/N320/N321

¢ https:/kb.ettus.com/X410

# https://www.ettus.com/all-products/usrp-n300/

# https://www.ettus.com/all-products/usrp-n310/

¢ https://www.ettus.com/all-products/usrp-n320/

+ https://www.ettus.com/all-products/usrp-n321/

# https://www.ettus.com/all-products/usrp-x410/

¢ One QSFP28-to-SFP28 breakout cable (NVIDIA MCP7F00-A003R26N DAC Splitter Cable Ethernet 100GbE to 4x25GbE 3m). This is only
needed when using the USRP X410.
# https:/store.mellanox.com/products/nvidia-mcp7f00-a003r26n-passive-copper-splitter-cable-ethernet-100gbe-to-4x25gbe-qsfp28-to-4xsfp28
¢ https:/store.mellanox.com/products/nvidia-mcp7f00-a003r30I-passive-copper-splitter-cable-ethernet-100gbe-to-4x25gbe-qsfp28-to-4xsfp28-

® One OctoClock-G. This is needed to synchronize the gNB USRP and the UE USRP. Ensure that device used is the "-G" model, which
contains an internal GPSDO module. This is only needed when the UE is implemented on a USRP device.
+ https:/kb.ettus.com/OctoClock_CDA-2990
+ https://www.ettus.com/all-products/octoclock-g/

¢ Four 10 Gbps Ethernet cables with SFP+ terminations. These cables are available in 0.5, 1.0, and 3.0 meter lengths. These cables are
needed when using the USRP N300, N310, N320, N321, but not when using the USRP X410.
# https://www.ettus.com/all-products/10gige-dc/
+ https://www.ettus.com/all-products/10gige-1m/
¢ https://www.ettus.com/all-products/10gige-3m/

¢ Four VERT900 antennas and/or four VERT2450 antennas. You can use either of these antennas based on the bands in use. There are also
many third-party vendors selling a wide variety of antennas, such as omnidirectional antennas. As long as the antenna has an 50-ohm
impedance and has SMA connectors, then it can be used with the USRP radio.
+ https://www.ettus.com/all-products/vert900/
¢ https://www.ettus.com/all-products/vert2450/

* One Quectel RM500Q-GL 5G wireless modem module. See further details about this item in the Hardware Requirements section.
¢ https://www.quectel.com/product/5g-rm500q-gl
¢ https://www.quectel.com/product/5g-rm50xg-series

¢ One Google Pixel 5A 5G handset (phone). Be sure that the handset is unlocked.
# https://www.gsmarena.com/google_pixel_5-10386.php
+ https://www.gsmarena.com/google_pixel_5a_5g-11059.php
+ https://www.amazon.com/Google-Pixel-5G-Factory-Unlocked/dp/B09DV93S9K/


https://kb.ettus.com/File:Photo_of_system_8.JPG
https://kb.ettus.com/N300/N310
https://kb.ettus.com/N320/N321
https://kb.ettus.com/X410
https://www.ettus.com/all-products/usrp-n300/
https://www.ettus.com/all-products/usrp-n310/
https://www.ettus.com/all-products/usrp-n320/
https://www.ettus.com/all-products/usrp-n321/
https://www.ettus.com/all-products/usrp-x410/
https://store.mellanox.com/products/nvidia-mcp7f00-a003r26n-passive-copper-splitter-cable-ethernet-100gbe-to-4x25gbe-qsfp28-to-4xsfp28-3m-colored-26awg-ca-n.html
https://store.mellanox.com/products/nvidia-mcp7f00-a003r30l-passive-copper-splitter-cable-ethernet-100gbe-to-4x25gbe-qsfp28-to-4xsfp28-3m-colored-30awg-ca-l.html
https://kb.ettus.com/OctoClock_CDA-2990
https://www.ettus.com/all-products/octoclock-g/
https://www.ettus.com/all-products/10gige-dc/
https://www.ettus.com/all-products/10gige-1m/
https://www.ettus.com/all-products/10gige-3m/
https://www.ettus.com/all-products/vert900/
https://www.ettus.com/all-products/vert2450/
https://www.quectel.com/product/5g-rm500q-gl
https://www.quectel.com/product/5g-rm50xq-series
https://www.gsmarena.com/google_pixel_5-10386.php
https://www.gsmarena.com/google_pixel_5a_5g-11059.php
https://www.amazon.com/Google-Pixel-5G-Factory-Unlocked/dp/B09DV93S9K/

e Two 5G SIM cards and one USB UICC/SIM card reader/writer.
.

¢ One Mini-Circuits 4-way DC-Pass, SMA, Power Splitter, 250 to 6000 MHz, 507 (ZN4PD1-63HP-S+).
.
.

e Two Mini-Circuits, 2-way, DC-Pass SMA, Power Splitter, 500 to 5000 MHz, 507 (ZN2PD2-50-S+).
.
.

o Four Mini-Circuits, VAT-10+, 10 dB Fixed Attenuator, DC to 6000 MHz, 50?7, SMA.
.

o Four Mini-Circuits, VAT-20+, 20 dB Fixed Attenuator, DC to 6000 MHz, 50?7, SMA.
.

o Four Mini-Circuits, VAT-30+, 30 dB Fixed Attenuator, DC to 6000 MHz, 50?7, SMA.
.

¢ Fourteen Coax SMA Cables, Mini-Circuits, SMA, Hand-Flex Interconnect, 18.0 GHz, 36 inches length (086-36SM+).
.
.

¢ One NETGEAR GS108 8-Port Gigabit Ethernet Unmanaged Switch. See further details about this item in the Hardware Requirements section.
.
.
e Three adapters from USB 3.0 to 1 Gbps Ethernet. Any major reputable brand will work. Use either USB-A or USB-C connector as per the
ports available on your host computer.

L4
L4

Three host computers are needed, one for the gNB, one for the UE, and one for the CN, with the specifications discussed in this section. The
requirements for the host computer running the CN are not as high as for the gNB and UE, but we recommend that all three host computers meet the
requirements described here. We also strongly recommend that each of the gNB, UE, and CN be implemented on their own dedicated system. A single
host computer should only run the gNB, or the UE, or the CN.

We recommend using an Intel Core i9 CPU, or an Intel Xeon CPU, 10th, 11th, or 12th Generation, with minimum clock speed of 4.0 GHz, and with
minimum 10 physical cores. Examples of such a CPU would be the Intel i9-10940X CPU, which has 14 physical cores, 4.60 GHz clock speed, and is
10th generation, and the Intel i9-12900K CPU, which has 16 physical cores, 5.20 GHz clock speed, and is 12th generation, as well as the Intel Xeon
Platinum 8351N. Be sure that the CPU has at least 40 PCle lanes, or at least enough lanes to support any GPU and 10 Gbps Ethernet card that are
being used. The system should ideally support PCle Gen 4.

We strongly recommend that only NVMe SSD disks are used. Many systems now use PCle Gen-4, and we recommend using a PCle Gen-4 NVMe SSD
disk. We recommend the Samsung 980 PRO SSD drive. Do not SATA disks at all. Using a RAID configuration with multiple drives should not be
necessary, although this can potentially be an option for further increasing performance and throughput.

L]
L]
L]
The system should have either dual-channel or quad-channel DDR4 or DDR5 (preferred) memory, with the highest clock speed available. A minimum of

16 GB or 32 GB of memory should be sufficient. Larger amounts of memory should not be necessary, as no virtualization, RAM disk, or other large
in-memory buffering is being used.

The GPU does not matter for the purposes of running UHD and OAI. If you might be doing some Al/ML processing in then GPU, then you may want to
use a particular GPU. The OAI 5G stack does not currently leverage the GPU.

The gNB and UE system will need a two-port 10 Gbps Ethernet network card for connecting to the USRP radio. The CN system does not connect to any
USRP, so it does not need a 10 Gbps Ethernet network card.
There are several cards that are relevant and that we recommend, depending on the specific use-case.
The Intel X710-DA2 is a solid network card, and works out-of-the-box with Ubuntu 20.04.4. However, it has some issues with DPDK. This reference
design is not initially using DPDK, so these issues are not yet relevant. The card is widely availabe and relatively inexpensive. The X710-DA4 is a
four-port version of the card.
Be sure that the computer's chassis can physically accommodate the network card.

L]


https://open-cells.com/index.php/sim-cards/
https://www.minicircuits.com/WebStore/Splitters.html
https://www.minicircuits.com/WebStore/dashboard.html?model=ZN4PD1-63HP-S%2B
https://www.minicircuits.com/WebStore/Splitters.html
https://www.minicircuits.com/WebStore/dashboard.html?model=ZN2PD2-50-S%2B
https://www.minicircuits.com/WebStore/dashboard.html?model=VAT-10%2B
https://www.minicircuits.com/WebStore/dashboard.html?model=VAT-20%2B
https://www.minicircuits.com/WebStore/dashboard.html?model=VAT-30%2B
https://www.minicircuits.com/WebStore/dashboard.html?model=086-36SM%2B
https://www.minicircuits.com/pdfs/086-36SM+.pdf
https://www.netgear.com/business/wired/switches/unmanaged/gs108/
https://www.amazon.com/NETGEAR-Ethernet-Unmanaged-Lifetime-Protection/dp/B00MPVR50A/
https://www.amazon.com/Network-Adapter-CableCreation-Ethernet-Supporting/dp/B013G4C8RE/
https://www.amazon.com/Ethernet-Thunderbolt-Gigabit-Network-Compatible/dp/B07XTGKP5M/
https://www.intel.com/content/www/us/en/products/sku/198014/intel-core-i910940x-xseries-processor-19-25m-cache-3-30-ghz/specifications.html
https://ark.intel.com/content/www/us/en/ark/products/134599/intel-core-i912900k-processor-30m-cache-up-to-5-20-ghz.html
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.amazon.com/SAMSUNG-PCIe-Internal-Gaming-MZ-V8P1T0B/dp/B08GLX7TNT/
https://www.tomshardware.com/reviews/samsung-980-pro-m-2-nvme-ssd-review
https://ark.intel.com/content/www/us/en/ark/products/83964/intel-ethernet-converged-network-adapter-x710da2.html
https://www.amazon.com/Intel-Ethernet-Converged-X710-DA2-X710DA2/dp/B00NJ3ZC26/
https://www.cdw.com/product/intel-ethernet-converged-network-adapter-x710-da2-network-adapter-pcie/3473844
https://www.newegg.com/intel-x710da2/p/N82E16833106253

The Mellanox MCX4121A-ACAT ConnectX-4 is also a solid network card, and also works out-of-the-box with Ubuntu 20.04.4. Furthermore, it works well
with DPDK.

The USRP X410 only has a QSFP28 port, which is for 100 Gbps Ethernet. In order to connect the USRP X410 to the host computer via 10 Gbps
Ethernet, a QSFP28-to-SFP28 breakout cable is needed. This cable will be required when using the USRP X410, and will connect directly to the 10
Gbps Ethernet cards. This cable is not needed for the USRP N300, N310, N320, N321.

It is certainly possible to directly connect the host computer to the 100 Gbps QSFP28 port of the USRP X410. In order to do this, a QSFP28 100 Gbps
Ethernet card would be needed. We recommend the Mellanox/Nvidia MCX516A-CCAT (PCle Gen3), and the Mellanox/Nvidia MCX516A-CDAT (PCle
Gen4). You will also need a QSFP28 cable. We recommend the Mellanox/Nvidia MCP1600-C003E26N, and the Mellanox/Nvidia MCP1600-CO03E30L
and MCP7F00-A001R30N. We also recommend the Intel E810 series network cards. There are both 100 Gbps Ethernet QSFP28 cards and 10 Gbps
Ethernet SFP28/SFP+ cards. All these cards work well with Ubuntu 20.04 and DPDK.

However, in this release of the reference design, it is not necessary to use 100 Gbps Ethernet, which is only needed for supporting high aggregate data
rates, such as for the larger 200 MHz and 400 MHz FR2 channel bandwidths, and/or for 2x2 MIMO configuration, both of which are not yet supported.

For this release of the reference design, we recommend using the Intel X710-DA2 and the Mellanox MCX4121A-ACAT ConnectX-4 cards, and using
dual 10 Gbps Ethernet connections.

There are many vendors who sell host computers that meet these requirements. This reference design was implemented using System 76 Thelio Mira
systems and Dell Precision 5820 systems. Both systems have flexible configuration options, and can be configured as described in this section.

Two USRP devices are needed, one for the gNB, and one for the UE. The USRP may be any of USRP N300, N310, N320, N321, X410. The USRP
devices can be mixed (i.e., the gNB could be implemented with a USRP X410, while the UE could be implemented with a USRP N310). All these USRP
devices can support all the channel bandwidths in FR1, up to and including 100 MHz. For FR2, the USRP N320 can support the 50, 100, 200 MHz
channel bandwidths, and the USRP X410 can support all the 50, 100, 200, 400 MHz channel bandwidths.

One OctoClock-G device is needed to synchronize the gNB USRP and the UE USRP. Ensure that device used is the "-G" version of the OctoClock,
which contains an internal GPSDO module. This is only needed when the UE is implemented on a USRP device.

One implementation of the UE is a 5G wireless modem module, such as the Quectel RM500Q-GL. The modem module requires a device driver and a
connection to a host computer. It is possible to use one of the gNB, UE, CN host computers to also drive the modem module, but it is recommended to
have a separate dedicated fourth host computer for this. This host computer need not be powerful or high-performance, and may run either Ubuntu
20.04 or Windows 10. It may be preferred to use Windows 10, as the Qualcomm drivers may work better on Windows than on Linux.


https://store.mellanox.com/products/nvidia-mcx4121a-acat-connectx-4-lx-en-adapter-card-25gbe-dual-port-sfp28-pcie3-0-x8-rohs-r6.html
https://www.mellanox.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://store.nvidia.com/en-us/networking/store/product/MCX4121A-ACAT/nvidiamcx4121a-acatconnectx-4lxenadaptercard25gbe/
https://www.amazon.com/Mellanox-ConnectX-4-MCX4121A-ACAT-25Gigabit-Ethernet/dp/B011HVAZ78/
https://www.fs.com/products/119650.html
https://store.nvidia.com/en-us/networking/store/product/MCP7F00-A003R26N/nvidiamcp7f00-a003r26ndacsplittercableethernet100gbeto4x25gbe3m/
https://store.nvidia.com/en-us/networking/store/product/MCP7F00-A003R30L/nvidiamcp7f00-a003r30ldacsplittercableethernet100gbeto4x25gbe3m/
https://store.mellanox.com/products/nvidia-mcp7f00-a001r30n-passive-copper-splitter-cable-ethernet-100gbe-to-4x25gbe-qsfp28-to-4xsfp28-1m-colored-30awg-ca-n.html
https://store.mellanox.com/products/nvidia-mcx516a-ccat-connectx-5-en-adapter-card-100gbe-dual-port-qsfp28-pcie3-0-x16-tall-bracket-rohs-r6.html
https://store.mellanox.com/products/nvidia-mcx516a-cdat-connectx-5-ex-en-adapter-card-100gbe-dual-port-qsfp28-pcie4-0-x16-tall-bracket-rohs-r6.html
https://store.mellanox.com/products/nvidia-mcp1600-c003e26n-passive-copper-cable-ethernet-100gbe-qsfp28-3m-black-26awg-ca-n.html
https://store.mellanox.com/products/nvidia-mcp1600-c003e30l-passive-copper-cable-ethernet-100gbe-qsfp28-3m-black-30awg-ca-l.html
https://ark.intel.com/content/www/us/en/ark/products/series/184846/100gbe-intel-ethernet-network-adapter-e810.html
https://www.intel.com/content/www/us/en/products/details/ethernet/800-network-adapters/e810-network-adapters/products.html
https://www.intel.com/content/www/us/en/products/details/ethernet/800-network-adapters/e810-25gbe-network-adapters/products.html
https://system76.com/desktops/thelio-mira-b2/configure
https://www.dell.com/en-us/work/shop/desktops-all-in-one-pcs/precision-5820-tower-workstation/spd/precision-5820-workstation
https://kb.ettus.com/N300/N310
https://kb.ettus.com/N320/N321
https://kb.ettus.com/X410
https://www.ettus.com/all-products/usrp-n300/
https://www.ettus.com/all-products/usrp-n310/
https://www.ettus.com/all-products/usrp-n320/
https://www.ettus.com/all-products/usrp-n321/
https://www.ettus.com/all-products/usrp-x410/
https://www.ettus.com/all-products/octoclock-g/
https://kb.ettus.com/OctoClock_CDA-2990

The required operating system for the gNB, UE, CN systems is Ubuntu 20.04.4. Be sure to use the Desktop image, not the Server image. It is also
necessary to use the low-latency kernel on the gNB and UE systems, but not on the CN system. The kernel version should be 5.15 for Ubuntu 20.04.4.
The "Installing and Configuring the UHD Software" section contains detailed information about what specific package dependencies need to be installed,
and how to install the low-latency kernel. Either Kubuntu or Xubuntu may also be used, instead of Ubuntu. Do not run Ubuntu in a Virtual Machine (VM).
Do not use any virtualization. Be sure to install Ubuntu on-the-metal.

The reference architecture will add support for Ubuntu 22.04.1 in the near future.

UHD is the open-source device driver for all USRP radios. The required version of UHD for this reference design is 4.2.0.0. The "Installing and
Configuring the UHD Software" section contains detailed information about the installation and configuration procedure. The "Building and Installing the
USRP Open-Source Toolchain (UHD and GNU Radio) on Linux" Application Note also contains details and thorough information about how to install
and configure UHD. We recommend that you build UHD from source code, and do not install it from a binary package. We also recommend that you
build UHD first, before building and installing OAIl, and that you do not build UHD using the OAl bui1d_oai script. UHD is required on both the gNB
system and the UE system, but it is not needed on the CN system.

The required version of OAI for this reference design is either 2022.w33 or the deve1 branch. We recommend that you build OAI from source code,
using the build_oai script. The OAIl software is required on the gNB, UE, and CN systems. The "Installing and Configuring the CN System", "Installing
and Configuring the gNB System", and "Installing and Configuring the UE System" sections contains detailed information about the installation and
configuration procedure for the OAI software. Be sure to build and install OAl only after building and installing UHD.

The Data Plane Development Kit (DPDK) is an open-source software project that provides a set of data plane libraries and network interface controller
polling-mode drivers for offloading TCP packet processing from the operating system kernel to processes running in user-space. This offloading
achieves higher computing efficiency and higher packet throughput than is possible using the interrupt-driven processing provided in the kernel. By
putting the network interface driver in user space, avoiding context switches, and pinning 1/O threads to cores, UHD and DPDK combine to largely
prevent the latency spikes induced by the kernel scheduler, and the overall overhead for packet processing is reduced.

The current version of the reference design does not use DPDK, but it is expected that DPDK will be required in future versions of the reference
architecture.

The "Getting Started with DPDK and UHD" Application Note contains detailed information about DPDK.

This section explains how to build and install UHD from source code. At the time of this writing, we recommend using UHD version 4.3.0.0.

Be sure to first install all the required dependencies, which can be done using the command listed below. You can run this command even if the
dependencies are already installed and you just want to verify that.

sudo apt-get install autoconf automake build-essential ccache cmake cpufrequtils doxygen ethtool g++ git inetutils-tools libboost-all-dev

First start by creating a working folder to store Git repositories.

cd $HOME/git
mkdir $HOME/git

Next, clone the UHD repository on GitHub in the working folder.

cd $HOME/git
git clone

Then, create a build folder, and select UHD version 4.3.0.0.

cd uhd/host

mkdir build

cd build

git checkout v4.3.0.0

Then, build UHD, using the default settings, and install it to the default location.
cmake ../
make -3j4
sudo make install
sudo ldconfig

Finally, add the following lines the end of your $HOME/.bashrc file.

export PYTHONPATH=/usr/local/lib/python3/dist-packages:/usr/local/lib/python3.7/site-packages:/usr/local/lib/python3/dist-packages:S$PYTHON
export LD_LIBRARY_PATH=/usr/local/lib:S$LD_LIBRARY_PATH

Verify that UHD was correctly installed. Check the version number, and be sure that the uhd_find_devices utility program run.


https://www.quectel.com/product/5g-rm500q-gl
https://www.quectel.com/product/5g-rm50xq-series
https://releases.ubuntu.com/20.04/
https://xubuntu.org/download/
https://kubuntu.org/getkubuntu/
https://en.wikipedia.org/wiki/Ubuntu
https://en.wikipedia.org/wiki/Xubuntu
https://en.wikipedia.org/wiki/Kubuntu
https://github.com/EttusResearch/uhd
https://gitlab.eurecom.fr/oai/openairinterface5g
https://www.dpdk.org/
https://github.com/DPDK/dpdk
https://en.wikipedia.org/wiki/Data_Plane_Development_Kit
http://github.com/EttusResearch/uhd.git

uhd_config_info --print-all
uhd_find_devices
uhd_usrp_probe

The USRP N300, N310, N320, N321, X410 can all be used as the gNB and the UE.

See the article for information about how to set up and configure your USRP N300 and N310 for
use with UHD and OAI.

The USRP N300 and N310 support all the channel bandwidths in FR1.

See the article for information about how to set up and configure your USRP N320 and N321 for
use with UHD and OAI.

The USRP N320 and N321 support all the channel bandwidths in FR1, and all but the 400 MHz channel bandwidth in FR2.

See the article for information about how to set up and configure your USRP X410 for use with UHD and OAI.

The USRP X410 supports all the channel bandwidths both in FR1 and FR2.

See the article for information about specific settings and configuration procedures needed to enable
optimal system performance. Specifically, it is necessary to set the CPU governors, enable the thread priority scheduling, set the socket buffer sizes, set
the Ethernet MTU values, and set the network card ring buffer sizes.

The use of the Data Plane Development Kit ( ) should not be necessary for running any of the FR1 channel bandwidths. At the time of this writing,
DPDK is not used in this reference architecture.

On the gNB system, and on the UE system, if the UE being used is a USRP radio, there are several specific settings that need to be made. The
hyperthreading, CPU frequency control, C-states, P-states, and any other power management should all be disabled. Each BIOS will have a different
way to do this. The two screenshots below show where in the BIOS menu to disable C-states and to disable Hyperthreading. Once these options are set
in the BIOS, reboot the system.


https://kb.ettus.com/USRP_N300/N310/N320/N321_Getting_Started_Guide
https://kb.ettus.com/USRP_N300/N310/N320/N321_Getting_Started_Guide
https://kb.ettus.com/USRP_X410_Getting_Started_Guide
https://kb.ettus.com/USRP_Host_Performance_Tuning_Tips_and_Tricks
https://www.dpdk.org/

Sequence |

Py


https://kb.ettus.com/File:c_states.jpg

This section explains the deployment of the OAI 5G CN system on Ubuntu 20.04 with a generic kernel. The deployment is possible either using
docker-compose or Helm Chart. We recommend using docker-compose.

The 5G CN deployment is possible in various forms using docker-compose or Helm Chart.

¢ Using docker-compose, perform a minimalist deployment

¢ Using docker-compose, perform a basic deployment

¢ Using docker-compose, perform a basic-vpp deployment with VPP implementation of UPF
¢ Using docker-compose, perform a basic deployment with static UE IP address allocation

e Using Helm Chart, perform a basic deployment

¢ Using docker-compose, doing network slicing

This Application Note explains only the minimalist deployment using docker-compose.
The minimalist deployment can be performed in two scenarios:

e Scenario 1: AMF, SMF, UPF (SPGWU), NRF, MYSQL
e Scenario 2: AMF, SMF, UPF (SPGWU), MYSQL

This Application Note only discusses Scenario 1.

The diagram below shows the layout and architecture of the various Docker containers running on the CN machine, along with the IP address of each
container.


https://kb.ettus.com/File:disable-hyperthreading.jpg

Docker Compose Host
Minirmalist Functional Core Nebwork

(MFCN) 192.168.70.130

OAl-NRF
Demo-oal ip-range 7 Need
192.168.70.128/26
Oinly for
Mamf Nami dema
MNIC purpase
0 OAl-AME| 3 DAlISME] 4
WY UL | [
Server 5CTP 192.168.70.133

1 192.168.70.132 N4 OALEXT-DN
192.168.70.131

6
N3 192.168.70.133

QAI-UPF (DASPGWL)

* 192.168.70.134

Verify that you are running docker-compose version 1.25 or higher.
dpkg --list | grep docker
Verify that you are running Python version 3.6 or higher.

python3 —--version
Note that you should add your username to the docker group so that you can run Docker operations without needing root privileges.

To add your username to the docker group, use the command below.

sudo usermod -a -G docker yourusername

In order to pull the Docker images for the different network functions of the 5G CN, you need to have an account on docker-hub. Use this to create
an account.

We need to pU” two base Docker images ubuntu:bionic and mysql:5.7.

Log in with your Docker Hub credentials, and push and pull images from Docker Hub.

docker login

docker pull ubuntu:bionic
docker pull mysqgl:5.7
docker logout

Be sure to set the following network configuration settings. You must run these commands every time you restart the CN machine, as they will not
persist across a reboot.

sudo sysctl net.ipvéd.conf.all.forwarding=1
sudo iptables -P FORWARD ACCEPT

The images are hosted under the OAl account caisoftwarealliance.
You may need to login to Docker Hub.

docker login

Pull the images listed below.

docker pull rdefosseoai/ocai-amf:latest

docker pull rdefosseoai/ocai-nrf:latest

docker pull rdefosseoai/ocai-spgwu-tiny:latest
docker pull rdefosseoai/oai-smf:latest
docker pull rdefosseoai/ocai-udr:latest

docker pull rdefosseoai/oai-udm:latest

docker pull rdefosseoai/oai-ausf:latest
docker pull rdefosseoai/oai-upf-vpp:latest
docker pull rdefosseoai/oai-nssf:latest

Re-tag the images so that the docker-compose files for the tutorial work.

docker image tag rdefosseoai/oai-amf:latest ocai-amf:latest
docker image tag rdefosseocai/oai-nrf:latest oai-nrf:latest
docker image tag rdefosseoai/ocai-smf:latest oai-smf:latest
docker image tag rdefosseoai/oai-spgwu-tiny:latest oai-spgwu-tiny:latest
docker image tag rdefosseoai/oai-udr:latest oai-udr:latest
docker image tag rdefosseocai/oai-udm:latest oai-udm:latest


https://kb.ettus.com/File:cn-docker-containers.jpg
https://hub.docker.com/

docker image tag rdefosseoai/oai-ausf:latest oai-ausf:latest
docker image tag rdefosseoai/oai-upf-vpp:latest oai-upf-vpp:latest
docker image tag rdefosseocai/oai-nssf:latest oai-nssf:latest

Finally, you may logoff. Your token is stored in plain-text.

docker logout

Clone the Git repository for the Core Network, and checkout the v1.3.0 tag.
git clone --branch v1.3.0
You may also do this in two discrete steps.

git clone
git checkout v1.3.0

Next, go into the top-level folder in the repository.

cd oai-cnbSg-fed

Next, synchronize all the Git submodules.

./scripts/syncComponents.sh

OAI-NRF component branch : master
OAI-AMF component branch : master
OAI-SMF component branch : master
OAI-SPGW-U component branch : master
OAI-AUSF component branch : master
OAI-UDM component branch : master
OAI-UDR component branch : master
OAI-UPF-VPP component branch : master
OAI-NSSF component branch : master

git submodule deinit --all --force
git submodule init
git submodule update

Configure the Core Network by editing the docker-compose-mini-nrf.yanl file and specifying the proper PLMN, TAC, Operator Key, and DNN,
according to the gNB and the UE being used.

If you are using the v1.3.0 tag for the CN code, then specify the PLMN, TAC, and Operator Key in the anf.conrt file, according to the gNB and the UE
being used. If you are using the newer v1.3.0 tag for the CN code, then do not do this.

User subscription information should be present in the MySQL database before trying to connect the UE. This can be done by adding the UE information
into the oai_db1.sql file. Adjust the values shown below with your actual values.

INSERT INTO users VALUES

(imsi, msisdn, imei, NULL, 'PURGED', 50,40000000,100000000,47,0000000000,1,key,0,0,0x40, 'ebd07771ace8677a',opc);

The containers must be deployed in a strict order for AMF, SMF, and UPF registration with NRF. The data flow sequence must be from the MySQL
database, to OAI-NRF, to OAI-AMF, to OAI-SMF, to OAI-UPF.

Install docker-compose onto the Core Network system. The link below provides detailed instructions.

Install Wireshark with the commands listed below.
sudo add-apt-repository ppa:wireshark-dev/stable

sudo apt update
sudo apt install wireshark

Check the Wireshark version, and confirm that it is at least version 3.4.7.

wireshark —--version

The Core Network is invoked using a Python script, which is a wrapper for docker-compose and other Docker commands. The script informs the user
when the Core Network is correctly configured by checking the health status of containers and checking the connectivity between different Core Network
components. Run the commands below.

cd oai-cnbg-fed/docker-compose
sudo python3 ./core-network.py --type start-mini --fgdn no --scenario 1

After running the command, you should see the output listed below.

root :DEBUG: Starting 5gcn components... Please wait....

Creating oai-nrf ... done

Creating mysqgl ... done

Creating oai-amf ... done

Creating oai-smf ... done

Creating oai-spgwu ... done

Creating oai-ext-dn ... done

[2021-09-14 16:44:10,098] root:DEBUG: OAI 5G Core network started, checking the health status of the containers... takes few secs....
[2021-09-14 16:44:47,025] root:DEBUG: All components are healthy, please see below for more details....
Name Command State Ports

mysql docker-entrypoint.sh mysqgld Up (healthy) 3306/tcp, 33060/tcp

oai-amf /bin/bash /openair-amf/bin ... Up (healthy) 38412/sctp, 80/tcp, 9090/tcp

oai-ext-dn /bin/bash -c¢ apt update; e Up


https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed.git
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed.git
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-20-04

oai-nrf /bin/bash /openair-nrf/bin ... Up (healthy) 80/tcp, 9090/tcp

oai-smf /bin/bash /openair-smf/bin ... Up (healthy) 80/tcp, 8805/udp, 9090/tcp

oai-spgwu /openair-spgwu-tiny/bin/en ... Up (healthy) 2152/udp, 8805/udp

[2021-09-14 16:44:47,025] root:DEBUG: Checking if the containers are configured....

[2021-09-14 16:44:47,025] root:DEBUG: Checking if SMF and UPF registered with nrf core network....

[2021-09-14 16:44:47,059] root:DEBUG: For example: oai-smf Registration with ocai-nrf can be checked on this url /nnrf-nfm/vl/nf-instances
[2021-09-14 16:44:47,059] root:DEBUG: SMF and UPF are registered to NRF....

[2021-09-14 16:44:47,059] root:DEBUG: Checking if SMF is able to connect with UPF....

[2021-09-14 16:44:47,176] root:DEBUG: UPF receiving heathbeats from SMF....

[2021-09-14 16:44:47,176] root:DEBUG: OAI 5G Core network is configured and healthy....

After launching the OAI 5G Core Network, run Wireshark from another terminal.

sudo wireshark

Once Wireshark has launched, you should see the demo-oai network interface listed. Open the demo-oai network interface, and confirm that all the
packets exchanged between the different containers such as NRF, AMF, SMF, UPF are shown.

Capture

...using this Filter: | N |Enter a capture filte

vethf72b9a3

enpOs3ife '
veth7dbdosga
vethbB8f3bil
vethSaS6eB4
veth58das6s

any

Loopback: lo
dockerD
br-6b5652beb0b6
veth25f4300
br-b411a6fM9075
nflog

nfqueue
pithiminn

The demo-oai network interface can also be created manually. Since this is not the default behavior, you would need to edit the docker-compose file. The
bottom section of the docker-compose-mininrf.yaml should be configured as shown below.

networks:

public_net:

external:

name: demo-oai-public-net

# public_net:
# driver: bridge
# name: demo-oai-public-net
# ipam:
# config:
# - subnet: 192.168.70.128/26
# driver_opts:
# com.docker.network.bridge.name: "demo-oai"

The docker-compose-host machine needs to be configured with the demo-oai network interface before deploying the core network components. This is
needed in order to capture the initial message exchange between the SMF-to-NRF-to-UPF.

(docker-compose-host)v$ docker network create \
——driver=bridge \
--subnet=192.168.70.128/26 \
-0 "com.docker.network.bridge.name"="demo-oai" \
demo-oai-public-net
455631b3749ccd6£10a366cdlc49d5a66cf976d176884252d5d88ale54049bc5
(docker—-compose-host)$ ifconfig demo-oai
demo-oai: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 192.168.70.129 netmask 255.255.255.192 Dbroadcast 192.168.70.191
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
(docker-compose-host) $ docker network 1ls
NETWORK ID NAME DRIVER SCOPE


https://kb.ettus.com/File:screenshot-wireshark-interface-demo-oai.png

d2d34e05bb2d bridge bridge local
455631b3749c demo-oai-public-net bridge local

We will next create a bridge automatically. The bridge can be automatically created using the docker-compose file, if there is no need to capture initial
packets. This is the default version in the docker-compose-mini-nrf.yaml file. The bottom section should be configured as shown below.

networks:

# public_net:
# external:
# name: demo-oai-public-net

public_net:

driver: bridge
name: demo-oai-public-net
ipam:

config:

— subnet: 192.168.70.128/26

driver_opts:

com.docker.network.bridge.name: "demo-oai"

The screenshots listed below show the Wireshark packet captures for various components when the bridge is built manually.

Showing-the NRF and AME-:

3 2.959854473 182 .168.798.132 182.168.70.130 TCP 74 57964 — BB [S5YN] Seq=0 W
4 2.9598766149 192.168.76.130 192.168.78.132 TCP 74 80 — 57964 [S5YN, ACK] 5S¢
Showing-the NRE and SME.
13 4.176452769 192.168.70.133 192.168.70.130 TCP 74 59742 - 88 [SYN] Seq=0 |
14 4.176473640 192.168.70.130 192 .168.70.133 TCP T4 80 - 58742 [SYN, ACK] 5S¢
'\llﬂ”.:ia-}dﬂ.l".:.lil'.:i —197.168. /0. 134 18,168, fd. 133 PHLF 79 PFCPF ASSociation secup H
34 5.954381959 192.168.70.133 192.168.70.134 PECP 77 PECP Association Setup R
Showing the NRE and UPE:
35 b6.B18142673 192.168.70.134 152 .168.70.130 TCP 74 48226 — BB [SYN] Seq=0 Wi
36 6.018164174 192.168.70.130 192.168.70.134 TCP T4 B0 — 48226 [SYN, ACK] Seq
thwing the SME requestio NRE for cuher\rihing UPE rngich’nﬁnn/dnrnnietratinn events:
16 5.254114218 192.168.70.133 192.168.70.130 HTTP/JSON 444 POST /nnrf-nfm/vil/
Qhr\\ming the SME rngiefrnﬁnn with NRE for the PUT rnqllncf'
26 5.266108102 192.168.70.133 192.168.70.130 HTTP/JS0N 982 PUT snnrf-nfm/visn
i istrationwith NRE for the PUT. reg 1est:
38 i.EEEZi%EEB 192.168.70.134 192.168. ?B 1306 HTTPHJSDM 596 PUT snnrf-nfm/vlsn

707 POST /nsmf-nfstat

45 7.295897217  192.168.70.133 192 .168.70.134 72 PFCP Association Se
46 7.295283861  192.168.70.134 192.168.78.133 PFCP 84 PFCP Association Se

These Wireshark packet captures are only visible if you create the demo-oai bridge manually. If the bridge is built automatically, then you will not
observe these Wireshark packet captures.

In order to halt the operation of the Core Network, run the commands listed below.

cd oai-cnbg-fed/docker-compose
sudo python3 ./core-network.py —--type stop-mini --fgdn no --scenario 1

Before installing and configuring the gNB system, be sure that you first have configured the system BIOS, implemented the Linux performance tuning
settings, and installed UHD.

The commands listed below build and install the gNB software from source code using the OAI Git repository.

git clone

cd openairinterface5g
git checkout 2022.w33
source oaienv

cd cmake_targets

Confirm that you are using the correct branch and commit hash. Run the command listed below, and verify that the branch is 2022.w33 and that the
commit hash is ad8381a66bb67d6ef7fa94c9abac6c66f3ac84b8.

git status

Edit the build_oai script, and comment out the lines shown below, by adding a hash mark # at the beginning of each line.

if [ "$HW" == "OAI_USRP" ] ; then
echo_info "installing packages for USRP support"
#check_install_usrp_uhd_driver
#if [ ! "SDISABLE_HARDWARE_DEPENDENCY" == "True" ]; then
# install_usrp_uhd_driver $UHD_IMAGES_DIR


https://kb.ettus.com/File:screenshot-wireshark-capture-NRF-and-AMF.png
https://kb.ettus.com/File:screenshot-wireshark-capture-NRF-and-SMF.png
https://kb.ettus.com/File:screenshot-wireshark-capture-SMF-and-UPF.png
https://kb.ettus.com/File:screenshot-wireshark-capture-NRF-and-UPF.png
https://kb.ettus.com/File:screenshot-wireshark-capture-SMF-request-NRF.png
https://kb.ettus.com/File:screenshot-wireshark-capture-SMF-registration-NRF.png
https://kb.ettus.com/File:screenshot-wireshark-capture-UPF-registration-with-NRF.png
https://kb.ettus.com/File:screenshot-wireshark-capture-NRF-notification.png
https://kb.ettus.com/File:screenshot-wireshark-capture-SMF-UPF-PFCP.png
https://gitlab.eurecom.fr/oai/openairinterface5g.git

#fi
fi

For the very first time that you build the gNB software, use the command listed below, which includes the "-I" option, which installs the package
dependencies for the gNB software.

./build_oai -I --w USRP
For successive builds, use the command listed below, which omits the "-I" option.

./build_oai --gNB --w USRP
Once the gNB software is built and installed, there are specific settings that need to be made in the gNB configuration file before we can run the gNB
software. The folder openairinterface5g/ci_scripts/conf_files contains various configuration files. For this Application Note, we will use the

configuration file band78.sa.fr1.106PRB.usrpn310.cont . In this file, change the parameters in the PLMN section. Ensure that the PLMN configuration
values are the same as the values used for the CN system, specifically tracking_area_code , mcc , mnc, sst , and sd .

gMB_name = TgNB-0AT";
min_rxtxtime pdsch = 6;

S/ Tracking area code, 8x8888 and 8xfffe are reserved wvalues
tracking_area_code = 408960;

plmn_list = ({
mcc = 208;
mnc = 92;
mnc_length = 2
snssailist = (

sst = 1;
sd = @xoeoeisb; /S @ false, else true

sst = 1;
sd = @xeR0BBc; S/ @ false, else true

-
1)

nr_cellid = 12345678L

The correct IP address for the AMF needs to be defined in the configuration file, as shown below. In the configuration file, in the aur parameters section,
in the ipva field, add the IP address of the AMF Docker container. In this reference architecture, it is 192.168.70.132.

FrHrrfff/ff AME parameters:

amf_ip_address = ( { ipvd = "192.168.70.132";
ipvb = %192:168:38::17";
active = "yes™}

preference = “ipv4"”;

The correct IP address for the gNB needs to be defined in the configuration file, as shown below. In the configuration file, in the NETwWORK_INTERFACES
section, add the IP address of the gNB system to the cne_1pv4_apprESS_ror_NG_aMr and the GNB_1pva_appress_ror_ncu fields. In this reference

architecture, it is 10.89.14.37.


https://kb.ettus.com/File:figure-gnb-config-file-mcc-mnc_ver2.jpg
https://kb.ettus.com/File:figure-gnb-config-file-amf-parameters_ver2.jpg

NETWORK_INTERFACES
{

GNB_INTERFACE_NAME_FOR_NG_AMF = “"demo-o0ai";
GNB_IPV4_ADDRESS_FOR_NG_AMF = "10.89.14.37";
GNB_INTERFACE_NAME_FOR_NGU = "demo-ocai”™;
GNB_IPVA_ADDRESS_FOR_NGU = "190.89.14.37";
GNB_PORT_FOR_S1U = 2152; # Spec 2152

The correct IP address for the USRP needs to be defined in the configuration file, as shown below. In the configuration file, in the ru section, in the
sdr_addrs field, we need to specify the device arguments for the USRP, which includes the type of the USRP (type), the mangement IP address
(mgmt_addr), the primary streaming IP address (addr), the secondary streaming IP address (second_addr), the clocking source (c1ock_source), and the
timing source (time_source). In this reference architecture, we use the device argument string listed below.

sdr_addrs="type=x4xx,mgmt_addr=192.168.10.2,addr=192.168.10.2, second_addr=192.168.20.2,clock_source=external, time_source=external"
The mgmt_addr, addr, and second_addr should be defined according to the configuration of your USRP device. For the cl1ock_source and the time

source, the values can be internal, external, Or gpsdo. In this reference architecture, an OctoClock-G is connected to the USRP, so we use the value
of external for both the clocking source and the timing source.

To enable communication between the gNB and CN machine, a static route must be added to the gNB machine. Note that this added route is not
permanent, and when the system is restarted, the static route will need to be added again. The command listed below will add the static route.

sudo ip route add 192.168.70.128/26 via 10.89.14.119 dev enol

In this command, the IP address 192.168.70.128/26 is for the demo-o0ai network bridge created when the CN is invoked, and the IP address
10.89.14.119 is for the CN machine, and the eno1 Ethernet interface is the port on the gNB machine connected to the CN machine.

On your machine, the Ethernet interface name will likely be different, but you can use the same IP address for the CN machine, and the same static IP
address for the CN machine, as used in this reference architecture.

In order to invoke the gNB, we first need to copy the edited gNB configuration file from the folder openairinterface5g/ci_scripts/conf_files to the
folder openairinterface5g/targets/PROJECTS/GENERIC-NR-5G/CONF. Then, the command listed below will invoke the gNB.

sudo ./nr-softmodem -O ../../../targets/PROJECTS/GENERIC-NR-5GC/CONF/gnb.band78.sa.frl.106PRB.usrpn310.conf --sa --usrp-tx-thread-config 1

Launch Wireshark, select the Ethernet interface connected to the CN machine, and watch for NGAP packets. As soon as the gNB is launched, the CN
and gNB will exchange NGAP setup request and response messages. In these messages, the gNB and CN check the MCC, MNC and TAC parameters.
If these values are identical on both the gNB machine and the CN machine, then the NGAP setup request and response will be successful.


https://kb.ettus.com/File:figure-config-file-gnb-ip-addresses.png

When the gNB is invoked, the N2 and N3 interfaces will be created. The N2 interface supports the NGAP protocol, and the N3 interface supports the
GTP protocol. The N1 interface is created when UE attaches to the network and supports the NAS protocol.


https://kb.ettus.com/File:GNB_Fig_9_NGAP_packets_ver2.jpg

APMF [(Access and Mobility Management
Function)

2
M1l

SMF (session
management functinn]lg‘:éi J

Za

M3 NG-U % pe

UPF (user plane function)

FES Roasion

(« iifﬁ

i t Front-haul

@ e e RRH

[
L

Once both the gNB and the CN machines are up-and-running, test the connectivity between the two systems by pinging the AMF in the CN machine
from the gNB machine. On the gNB machine, run the command listed below.

ping 192.168.70.132
If the ping fails, then it may be due to the firewall settings. On the CN machine, run the commands listed below to configure the firewall.

sysctl net.ipv4.conf.all.forwarding=1
sudo iptables -P FORWARD ACCEPT

After running these commands on the CN machine, run this command on the gNB machine to add a route from the gNB machine to the CN machine.
You will likely need to replace the Ethernet interface name eno1 with the correct interface name on your gNB machine.

sudo ip route add 192.168.70.128/26 via 10.89.14.6 dev enol

The IP address 192.168.70.128/26 is for the demo-oai interface, and 10.89.14.6 is the IP address of the CN machine, and eno1 is the Ethernet interface
name on the gNB machine.


https://kb.ettus.com/File:GNB_Fig_7_gNB_interface_with_core_network_ver2.jpg

_ Edit Miew Co Capture Analyze Statistics Telephony wireless Tools uetp

1 dQ( )‘:l»u--ml,f:f

F
TAAC
FHY
e AMF —_
NGAP Protoco HTTI
N11 wrTR/2
—— SFP+
= Monolithic gNB Gib-U SMF |
= :_E:':_ = :’-1,- -l UI[P)P
oy SFP+ MAC
PHY N4
N3
GTP-U UPF

192,168, ?ﬂ 132

Destination

16.69.14, 37

167 10, 456894742 338 INIT ACK
168 10.456914128 16.89.14,37 192.168.78.132 SCTP 318 CODKIE ECHOD
169 10.457054538 192,168.70.137 16.89.14,37 SCTR 66 COOKIE_ACK
- 178 18.457517584 10.89.14.37 192.168.78.132 SCTP 138 DATA
171 10.457636391 192,168.70.132 10.89.14.37 SCTP 62 SACK
172 10. 458823479  192.168.70.137 16.89,14.37 5CTP 2686 DATA
173 19.458829242 16.689,14.37 182.168.76.132 SCTP 62 SACK
480 42. 743523364 10.89.14.37 192.168.79.132 SCTP 98 HEARTBEAT
481 42. 743654850 192, 168,70.132 10.89.14.37 SCTP 98 HEARTBEAT _ACK
487 44.397879797 192 .168.70.137 16.89.14.37 SCTP 98 HEARTEEAT
ABE 44.387863922 10.89,14.37 192.168.78.132 SCTP 98 HEARTBEAT ACK
"%H 487523984 16.89.14.37 192.168.70,132 SETP 98 HEARTBEAT N
74.4B7648170 192.168.70.132 10.89.14.37 5CTP 98 HEARTBEAT ACK ;
77.165930401 192.168.76.132 16.89.14.37 SCTR 98 HEARTBEAT
665 77.165040066 10.89.14.37 192.168.78.132 SCTP 98 HEARTBEAT ACK

s on wire (848 hil::s,'p 186 bytes captured (848 bits) on ,{iﬂterf"m n
8:7b:25: za;}:l. 2b (bO:7D: 25:23:71:2b), Dst: aau_s.,ad 27 {m: 1ec:db:6e:s
4, sre: ';I.Bl’l]h:u 37, Dst: 192.168.70.132 AR
ocol, Src Pﬂl"h"' 51122 (51122), Dst Pnrt m téﬂﬂﬂ:



https://kb.ettus.com/File:GNB_Fig_8_Verification_Steps_ver2.jpg
https://kb.ettus.com/File:GNB_Fig_10_SCTP_packets_ver2.jpg

There are three scenarios for the UE implementation: the USRP radio; the 5G wireless modem module; and the COTS handset.

The UE can be implemented by running the OAI softmodem with a USRP N300, N310, N320, N321, or X410 device. Currently, this reference
architecture is focused on the use of a USRP X410 device, although the integration of the other USRP devices is similar to the integration of the USRP
X410 and is relatively straight-forward.

Before installing and configuring the UE system, be sure that you first have configured the system BIOS, implemented the Linux performance tuning
settings, and installed UHD.

Note that the procedure for building and configuring the UE software is very similar to the procedure for building and installing the gNB software.
The commands listed below build and install the UE software from source code using the OAI Git repository.

git clone

cd openairinterface5g
git checkout 2022.w33
source oaienv

cd cmake_targets

Confirm that you are using the correct branch and commit hash. Run the command listed below, and verify that the branch is 2022.w33 and that the
commit hash is ad8381a66bb67d6ef7fa94c9a6ae6c66f3ae84b8.

git status
Edit the build_oai script, and comment out the lines shown below, by adding a hash mark # at the beginning of each line.
if [ "$HW" == "OAI_USRP" ] ; then

echo_info "installing packages for USRP support"
#check_install_usrp_uhd_driver

#if [ ! "S$DISABLE_HARDWARE_DEPENDENCY" == "True" ]; then
# install_usrp_uhd_driver S$SUHD_IMAGES_DIR
#£1

fi

For the very first time that you build the gNB software, use the command listed below, which includes the "-I" option, which installs the package
dependencies for the gNB software.

./build_oai -I —--w USRP
For successive builds, use the command listed below, which omits the "-I" option.

./build_oai --gNB --w USRP

Once we build and install the UE software, we need to modify the UE configuration file. Only one UE configuration file is available in the folder
openairinterface5g/targets/PROJECTS/GENERIC-NR-5GC/CONF. The UE configuration file used in this reference architecture is ue.cont. The default
contents of the file is shown below.

uicc0 = {

imsi = "2089900007487";

key = "fec86babeb707ed08905757b1bb44b8E";

opc= "C42449363BBAD02B66D16BC975D77CC1";

dnn= "oai";

nssai_sst=1;

nssai_sd=1;

}
Edit the fields imsi, key, opc, dnn, nssai_sst, nssai_sd per the values for the CN. Earlier, when configuring the Docker containers for the CN system, we
entered several parameters in the cai_db1.sql file. The imsi, kxey, opc fields there should match the values here in the UE configuration file. The dann
value should be same as listed in the docker-compose-mini-nrf.yaml<code> file. The <code>nssai_sst and nssai_sd values should be same as listed
in the gNB configuration file and the docker-compose-mini-nrf.yami file.
Run the command listed below to invoke the OAI UE softmodem.

openairinterface5qg/cmake_targets/ran_build/build sudo ./nr-uesoftmodem —--usrp-args "addr=192.168.10.2, clock_source=external,time_source=e

The command-line option --usrp-args specifies the USRP device arguments, which are passed to the UHD driver. Here we specify the IP address of
the USRP, along with clocking source and the timing source, which are set to external, to indicate the use of the connection to the OctoClock-G device.

The command-line option -r 106 specifies the PRBS being used. Based on the PRBS, we can calculate the operational channel bandwidth being used
(i.e., 40 MHz).

The command-line option --numerology 1 specifies the SCS being used (i.e., 30 KHz).

The command-line option --band 78 specifies the 3GPP frequency band being used.

The command-line option -c 3319680000 specifies the CF we are operating (i.e., 3.319 GHz).
The command-line option --nokrnmod 1 forces the use of the tunnel interface.

Once the UE is attached to the CN, verify that the oaitun_uel network interface has been created, and that is has been assigned an IP address of
10.x.x.x, using the command listed below.

ifconfig

The call attach process between the UE and the gNB is illustrated in the sequence diagram shown below.


https://gitlab.eurecom.fr/oai/openairinterface5g.git

L. CF-1.391 GHz
2. 50% 30 KMy
1. Band 78
i, PR 104
UMD: 4.2.000 5. BW- 40 Mz
URP; X410 . Maornolithic cmumﬂtwﬂﬂqwhhuhhnﬁt Network Functions
Okl K oy, il Ol Baishon
Mvtirk fapssiery  Managuenent fanetion w:::'“' “""";“""’""""""
FUT Bagints i Wt it
AT Kagiver st Aoqipt
H.l‘lw
POST w.ltr-q
PUT Regitratson Regurt
u“..l.:.:“ POST Registrathon Accepd
Deplorprrent PROP Asiociation Setup
[resem
PICF Avsociation Setup
Baypenne
Seadon b NGAP S§tup Request R
Exrcution of gNB
AP Pl b NGAP Sqtup Response
e -
r--m-uulh.
LL e e |
O RRA Baendoam Aoty Prodedare snd
RiC
MNAS Registration Request
NGAP: Regstuﬁon Request
MNGAP: Registration Accept process will sho carried out ke
- Eentity reguaest, puthentiastion, Seourity,
capbility info
Session 3:
Call Attach MNAS PDU Session
Proceis Establishement Request
NGAP:PDU Sessign Establishement
Request o i
o POST PO feusion |
Eatabiihement gttt
NAS PDU Session NGAP:PDU kia:-n Establishement
Establishement Accept ept

The relevant lines in the OAI UE softmodem log file show information about the call attach process.



https://kb.ettus.com/File:oai-ue-call-attach-process-diagram.jpg

oz [RCEES) (TR Cnadl abbelets Piegeeiry DL BDOBRBR0. 0000, UL BIIMRSI00 G0 (AF il 0 SRE_SREN D, ohasRsl 0. @0 el dRaSAELE 50

1 Pt b Bl B4 1Y Lo

[T [T uhgesd fysan] Batniteg [nitial Byman omes 4}

[P} [T ma_symemgs wimsi Syss soarew = O, Peal Posnes ot po J000E, wal = LEAWYAITIAE b Sl awy 40 @B, Ofe 0000000
P31 sdsiwliod Ssistiod JRECHL @iddcsesoili

[y [TEa) ISitial &y | EFiiSaisd PID g=Sdliied JO A0, EEAD @

[T wynd g JOIRAN el afléed JRRRIN

CEE CEluA e SSURPLLEE (ReDRal CF)

Bidd & FRdd © U9 BELTED 410F0, Phaee bl 4

[rrT) [ON3] IREUEEE oyill FPLGIMLE] PFEE SeleflLo8 (I0_SCCeet ¥)
(L Confiparing MRS For FLret WIS receptios

[T LT IREREAL RS PSR dedoded sedesafully

114 85! TS BEermal pasfian Cellild @ esiiis 40090, phaiss 1, pi=si &

112 85! [eEd] Ia eyndl, so_offeed JTORA saagles

i) [ER &) EE EHsabaissids = jadl -La0 S Jdkd -bal @8, Hais 10k, B O ds, iimi = AN SRR, § e - LAl BN

142 5§ [TE &) Meabisd Caiiled Fiepeeily 0L %000 B (cE0esE © Bij

[T N Conflgerisg chasasl O [(rf oShals 000 Settlssy ta Eoeg FRIBOBDOOO, DOO000 Bi, o o DRLEOBOIDD . D0ODDO Bz

[ Got syl B o _cEffees LB, carviss off & By, cegelsm D00 000000 (DL ALWS0000 . Rl By, UL 31 EOBOO00. BO0O000 B

Beiiissy THEF TEL Fpesg 33] Gl0elelel  Delleielsl, BN Frpesy 530 00e0allali  Ealelelalnl

LU DI daosbad

LI HE el daglen mpeditag i0 0 Ry fhe basdialle | V] Baad = TH

[HE Rl | R il TR, deples i TOD, dugles spadiieg = o NG

EHEL Sattiney TOD ccafigerstice perisd fo d

[rET) TOD has basn EOORErly oomflgss id

(MRS Emitzalipimg wl_coafig regeest. mam slse ml = 3

[T ™ &) Loyt ] om0 -COCH QST ), Comd pad gney DD By aplagpes pr iBmee i, gl &)

EFEy | By ami piny BE by JTHRE samgles imeds = 4)

EFEY ) FEPmlant ey =] gt illcffnl —

4.5 5] Euptpalypatpom of i-woef SORLRL R -Rald JaLion ESCRBE Jdeoedade

[T} FRACE (O 2] im slen 1B, plascisg FIACE ia positioan JOIE, megl Foegoescy stagt @ (62 25, posssile offess 0. figes scapess geot Lda ©

[Nl | [PE &) (PR Son BT RAN seblOm B s

L [TR &) (RO Gy RARID RAN a0

[Hl s | (O &) (RAMRDT] (190, 7] Possd AN with uba isdsades RANID @

[l e | (Lo s P

[T FEPRAleRtag o] samglesttt gE_sffesy == -4

[mad | [P0 &) (RS Frams .0 § Ge90ived SORTSNTLEA JORIISN AR FORTANY | CeLeRTVoORITEd Termaneting BE posoedsie

CHl | O Spidcb.afRLFRC] RE gaionduls seioesded. (B-fls Contestion Besilation 1o meccesrfsel

Launch Wireshark to view the packets exchanged between the UE and gNB for this call attach process.

r 1 7= 185314 3 152, 16878, 152 Lo 126 MGSetupRegoest
3 7612247152 190,168 70102 18.99.14.07 WGar BTE MGEELRRe ppoate
&R 36, 156MA0TY IR E9.04. 07 152, 168. 78, 132 L 136 NiSetapRequest
&66 D6, JEBETMYE 192,168, M. 102 1989, 14.37 [ 574 Nibetuplesponte
BLE B9, 0ERB1ESO2 10.85.14.37 152.168. 70,100 FERLA ek B 145 InficlaliEMessage, Reglstratlon reqoeest
GAT 0P.RGETEIA11  192.163.7M0.132 18.89.14.37 WGP (RS MG 638 Downlinkda§Transport, Authenticaticn reguest
B B9 215W0TE] 10 F9.14. 57 152, 168. 70,132 AP MRS 305 145 UpliskiasTraaspart, Authentication rejponse
BiS B9 . 021068060 192,188, 70.102 18.589.14.57 WGP RS- 35 #E3 DownlinkdSTransport; Security mode command
550 B9, MRLEITE 10ER.14.0T 171 166. 70,102 PAR AS S5 MG 5565 174 UplisksiTransport, Secerlty mode coeplete, Registration request
Bil B9, MOR1LETOT 192,168, 70.102 10.89,14.97 P s - S 1399 InlelalContentietuplequest, Reglstration aconpt
B5D B9 07089572 10 E9.04.07 15216870, 152 [ 1x2 Lilldiu(lplbliil}'lrr'fﬁlrﬂ[tltim
£S5 £5.570529900 10.85.14. 17 192,168, 70,150 T 8¢ Initiallontextsetuptie sponte
GOl #0. 40010960 10.69.04.57 132 168. M. 152 L 128 UplisiWasTransport, H‘;Iﬂfllfm conaplete
Bit W H2IATIE I8 F9.14. 57 152 16870, 132 WGP RAS - 305 145 UpliakmasTranspart, UL NS trandport, PO pediion establithaent regue
BEY 5. 607182012 193188 M.102 18.8%. 14.57 AP RS- 05 ek Piubess lonesourceletuplequest, DL We5S transport, POU session establi
566 50, TROMETE 10, B5.14.07 15216870, 100 WP 122 PoUsess LonResourceSetupRespone

To verify that UE has successfully attached to the gNB, check the OAI-AMF logs on the CN machine using the command listed below. Check the output
to confirm that UE has been registered by the Core Network.

sudo docker logs oai-amf

Run ifconfig on the UE machine to check the IP address assigned to the UE. Verify that the caitun_uel network interface has been created, and that
is has been assigned an IP address of 10.x.x.x. You can also check the OAI-SMF logs using the command listed below.

sudo docker oai-smf logs

The UE can be implemented using a 5G wireless modem module. Currently, this reference architecture is focused on the use of a Quectel RM500Q-GL
5G wireless modem module. This device is a 5G NR sub-6GHz M.2 module which meets the 3GPP Release 15 specification, and is optimized for
industrial and commercial loT and eMBB applications. It supports both standalone (SA) and non-standalone (NSA) modes. Other wireless modem
modules can certainly be used as well. Detailed documentation for the Sierra Wireless EM9191 module will be added in the near future.

When using a 5G wireless modem module or a COTS handset, a SIM card will be required. If a USRP is being used as the UE, running the OAI UE
softmodem, then a SIM card is not required.

The SIM card used in this reference architecture is provided by Open-Cells, and is shown below. Note that the ADM code is printed directly on the SIM
card itself.


https://kb.ettus.com/File:oai-ue-logs.jpg
https://kb.ettus.com/File:oai-ue-wireshark-captures-between-ue-and-gnb.jpg
https://www.sierrawireless.com/iot-modules/5g-modules/em9191/
https://open-cells.com/index.php/sim-cards/



https://kb.ettus.com/File:quectel-ue-sim-card.jpg

Insert the nano SIM card into the SIM card reder/writer, and plug it into the USB slot on the UE computer.
To read and program the SIM card, we use the program program_uicc from Open-Cells ( )

We first read the existing data on the SIM by running the command below.

sudo ./program_uicc --adm 1

15 sudo .

We then write the key and the OPC in the UICC file in the SIM card. The ADM value enables this. Run the command below to perform this operation,
where apbv_vaLue_rroM_siM is the ADM value printed directly on the SIM card itself.

sudo ./program_uicc --adm <ADM_VALUE_FROM_SIM> --key 0COA34601D4F07677303652C0462535B —-opc 63bfa50ee6523365££f14c1£45£88737d —--authenticat


https://kb.ettus.com/File:quectel-ue-ADM-code.jpg
https://open-cells.com/index.php/uiccsim-programing/
https://kb.ettus.com/File:quectel-ue-program_uicc_output_for_read.jpg

Ensure that the values being programmed into the SIM card match the corresponding values entered in the SQL database on the CN machine. The
values of primary importance are listed in the table below.

Primary Configuration Parameters for UE, gNB, CN

Parameter UE gNB CN

IMSI 208920100001101 MCC: 208, MNC: 92 208920100001101

MSISDN 00000101 00000101

IMEI 863305040549338 863305040549338

Key 0COA34601D4F07677303652C0462535B 0COA34601D4F07677303652C04625358
OPC 63bfa50ee6523365ff14c1£45£88737d 63bfa50ee6523365ff14c1£45£88737d

Attach all four antennas to the Quectel wireless modem module. Then, mount the Quectel module into the M.2 connector slot on the carrier board. Then,
connect the carrier board to the UE computer via a USB 3.0 port.

We will use Minicom to communicate with the Quectel module over a USB serial connection. Run which minicom to verify that Minicom is already
installed. If not, then run the command listed below to install it.

sudo apt-get install minicom
Once the Quectel module is plugged in, the Linux operating system should create several USB serial devices which can be used to communicate with
the module. The default device should be /dev/ttyusso. Run the command listed below to start a Minicom serial console session with the Quectel
device.

sudo minicom /dev/ttyUSBO

Note that in order to exit Minicom, type Ctrl-A, then "X".

We use Minicom to issue AT Commands to the 5G modem module.
There are informative articles about AT Commands and

There are some specific AT Commands that we need to control and query the Quectel module. The AT Command are generally not case-sensitive.
Execute all the AT Commands listed below, in-order, to setup and configure the Quectel module.

AT+GMR

Display the current firmwave version number.
AT+CIMI

Display the IMSI of the (U)SIM.
AT+GSN

Display the IMEI of the (U)SIM.

AT+QMBNCEFG="select", "ROW_Commercial"
Unlock the Quectel module.

AT+gnwprefcfg="nr5g_band"
Display which 5G NR frequency bands are configured.

AT+gnwprefcfg="mode_pref"


https://kb.ettus.com/File:quectel-ue-program_uicc_output_for_write.jpg
https://en.wikipedia.org/wiki/Hayes_command_set
https://www.twilio.com/docs/iot/supersim/introduction-to-modem-at-commands

Display which 5G NR mode is set.

AT+gnwprefcfg="mode_pref",nr5g
Set the operational mode to 5G NR SA.

AT+gnwprefcfg="nr5g_disable_mode", 0

Enable 5G NR operations.

AT+cgdcont=1, ?IP?,?0ai?,20.0.0.0?2,0,0

(cid, pdp type, apn, pdp_addr,

Specify the PDP context parameters for a specific context cid.

AT+CFUN=0

Set the minimum functionality of the module.

AT+CFUN=1

Set the full functionality of the module.

data_comp,

head-comp)

Once all the AT Commands have been executed, we should see msg1, msg2, msg3, msg4, RRC logs on the gNB and the registration request from the
UE to the AMF on Wireshark.

The screenshot below shows Wireshark running on the CN machine, and shown on the right is the corresponding sequence diagram showing the
message exchanges between the UE, gNB, and CN AMF, from the perspective of the CN machine.

Li=

Frmemar {1 gt

S48 A3 LSLIFRRLE
Wihsl B3, A T

B jre Do Geiue geshes gasiin

Q g

TR RTE
NRE A, o, §EE

s Frass B9 408 bytes oo wirg | beed Bits),

RN
I I T T
e ] =
e
e a1 wE
e
e ]
o e

3-8 3 e

[ DR L]

W F o Agm s Pl Peel i

Lo
1. W% L4 K7
AR T,

[P s ki s 2
b

e

i

L}
: St e
L e Trmatee s frelys
i 1 AL B P
) A
e marnim
e e

R

FHLS Led gy

T
ET AT Nt

Lbe wyies coatered LIned BALL] om Anbae Faca dees-nal,
o m P o (i

e TR
oS A & &F
oE b ew
o Ay im e 3
i Ay fd af a1
= TR IR B 8
A% a8 By B B i

bt GETIT NPERC (] Byl LSS O T NTRE 41 bpld]

14

P s

At et
&
mak
(0 o F 1 et 1 i e D
= Ansih
L e - S e 1 L L e g WTTRL L Aweslee (g 0 =
Amwha v ppl TEyend e mbiss | apel i oA A
-
VA T e
A e 17
(-
L 181 s
R Sl
]
et
e
.
B
ARG Crsrurs i §
.
\
T e
magisar

Pt e [

P YRk - Sy 1 01w Frebe i e

FIEG Sarnn i B

The screenshot below shows Wireshark running on the gNB machine, and shown on the right is the corresponding sequence diagram showing the
message exchanges between the UE, gNB, and CN AMF, from the perspective of the gNB machine.


https://kb.ettus.com/File:quectel-ue-wireshark-cn.JPG

Eie il Yew Lo Cephoes  drabos  IEstidbon  Seleplcany sk
( QA %= I o e [
9
L e e
0 3 1159 0] a.as.i4. 3F S W o e RS l [
BIEC ST . i s L NEL L TR FEQEENE, BEQUNITRLION FEE Py
frad —
I
[ ] R
13¥ Failite |Bymon Fakluse) L ]
R BE
AT o A Basd BTEY BES RS
T 5 S H, Bednd i1y bl Gimsbiel bR E
T W -
TETERER COMTE T ] ! i
FALSBETEE D FE. A B7 15% . 148 . . L5} w iiyEAfolndicat ion
AUSADATAT  ED W B3P 193 . 188 . T, AN 154 T taliarputberanlrsponar, UDlLraihET ranupr
WPl Hedd  ED. B0 BAL 0P T iR A SR - 350 LT vplinsAifranaposr Palh Fooaaeduss
3. RTINS LS. e, FO. 137 14. 3 AR - S S PORIEE 0 L bDu P T R e R E hpemiry & Aami [T
Eo. W9, B4 BF i8F.1k4 . Fa. 1R AR EEAR
O
v Frams 380 156 Pyoes on wife [A098 LAIR), APV ByDEs ceptured (R00d DELE) o Taoe smsd, 10 B
o Erbmrner 15 Svor Bwil _23rFipie (e FerdSi 390 Tn w0, Gens Dl me g i XF 8 p e pah e Sas 0
& [ACATRR] ProCofal Werspon 4, Begl 10,8804 3%, BaUi 183,088, 0, 15D i ap
o BLrEeS COREVel TRasdnlenles Poalidel, Bae POFLT BALLF (IBE1T), DHL Bergy SRAF [Ny Esinangs
v NG A llaal e Prolecal S
ayuag |—
mEL
iR, e
T 2
LE Sty
=
S XT BF M TR 2N TH MW BN OB &% B2 ]S mege I . :
&3 9% 48 B 16 D oa F I3 o &8 oREE JTu
e B3 oh Be e & &7 45 85 84 F & =By
AF xd B o M e e L L = LS T e i
b B e Tl B @ DO B2 TR T O B e ¥ a0 T
&3 9% OX @8 &7 as dd 3d af 41 4w o2 L e ek E .
Frarme (V8 bylwnd BRIV Dol [ Bt Cvusbeend OC TET RTHDNC (1A Ul OO0 TET STRG {1 Bte)
T Al POk ek W e PR RS Dl 1T 3, A Ol ‘

We run the AT Commands listed below in Minicom, and examine the responses, to verify the operation of the system.

AT+COPS?
This output specifies the current operators and their status.
Expected Output: 0,0,"208 92 open cells", 11
Field 1: Availability of Operators, where o specifies Unknown
Field 2: Operator Selection of operators, where o specifies Automatic
Field 3: Operator Name, where 208 92 open cell specifies pre-programmed operator name
Field 4: Access Technology Selected, where 11 specifies 5G NR connected to a 5G CN

AT+C5GREG?
The output of this command shows the 5G network registration status.
Expected Output: 2,1, "1","0",11,16,"01.000078;00.000000:01.00000C;00.000000"
Field 1: Enable network registration and location information, where 2 specifies Unsolicited Mode
Field 2: Registration Status, where 1 specifies Registered on Home Network
Field 3: 1 specifies a three-byte tracking area code in hexadecimal format
Field 4: o specifies a five-byte (NR) cell ID in hexadecimal format
Field 5: 11 specifies that the connection mode is 5G NR connected to a 5G CN
Field 6: 16 specifies the number of octets of the allowed NSSAI information element
Field 7: 01.000078;00.000000:01.00000C; 00.000000 specifies the allowed NSSAI

The UE can be implemented using the commercial (COTS) handset. This reference architecture will feature the use of the Google Pixel 5A handset.

Detailed documentation about this will be added in the near future.

We run ping on the CN machine to verify connectivity from the CN, through the gNB, to the UE. Run the command listed below on the CN machine.

Replace 12.1.1.x with the correct IP address of the UE, as assigned by the CN.

sudo docker exec ?it ocai-ext-dn ping 12.1.1.x
We use iperf to measure the throughput in bits per second for the Downlink (DL) and for the Uplink (UL).

For the Downlink, the client runs on the CN machine, and the server runs on the UE machine.
Run the command listed below on the client. Replace 12.1.1.x with the correct IP address of the UE, as assigned by the CN.
sudo docker exec ?it ocai-ext-dn iperf ?c 12.1.1.x ?u ?b yM --bind 192.168.70.135

Run the command listed below on the server. Replace 12.1.1.x with the correct IP address of the UE, as assigned by the CN.


https://kb.ettus.com/File:quectel-ue-wireshark-gnb.JPG

iperf ?s ?i 1 2u ?B 12.1.1.x

For the Uplink, the client runs on the UE machine, and the server runs on the CN machine.

Run the command listed below on the client. Replace 12.1.1.x with the correct IP address of the UE, as assigned by the CN.
iperf ?c 192.168.70.135 ?u ?b yM --bind 12.1.1.x

Run the command listed below on the server. Replace 12.1.1.x with the correct IP address of the UE, as assigned by the CN.

sudo docker exec ?it oai-ext-dn iperf ?s ?i 1 -u ?B 192.168.70.135
The primary method of technical support is through mailing lists and direct email.

The usrp-users mailing list is for discussions specifically involving the USRP hardware and the UHD software.

The list archives can be found at the link below.

There are two mailing lists, openair5g-user and openair5g-nr, which are for discussions specifically involving the Open Air Interface (OAl) software
stack. More information can be found at the links below.

You can contact the authors about the reference architecture directly via email at supporteettus.com.


https://lists.ettus.com/list/usrp-users.lists.ettus.com
https://lists.ettus.com/empathy/list/usrp-users.lists.ettus.com
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/MailingList
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/AskQuestions

	pdf-book664cb8f9c1124

