Difference between revisions of "OctoClock CDA-2990"

From Ettus Knowledge Base
Jump to: navigation, search
(Physical Specifications)
(8 intermediate revisions by the same user not shown)
Line 34: Line 34:
 
===Dimension (1U Rackmount)===
 
===Dimension (1U Rackmount)===
 
4 x 17.187x 1.75 inches
 
4 x 17.187x 1.75 inches
 +
 +
===Weight===
 +
2.6 lbs
 +
 +
===Drawings===
 +
* [[File:cu ettus octoclock cca.pdf]]
 +
* [[File:cu ettus-octoclock.pdf]]
 +
 +
===CAD/STP Models===
 +
====OctoClock CDA-2990====
 +
* [[Media:cu ettus octoclock cca.stp.gz| Motherboard]]
 +
 +
====OctoClock CDA-2990====
 +
* [[Media:cu ettus octoclock.stp.gz|Enclosure]]
  
 
==Environmental Specifications==
 
==Environmental Specifications==
Line 41: Line 55:
 
===Operating Humidity Range===
 
===Operating Humidity Range===
 
* 10% to 90% non-condensing
 
* 10% to 90% non-condensing
 
  
 
==Input/Output Impedance==
 
==Input/Output Impedance==
 
All RF Ports are matched to 50 Ohm with -10dB or better return loss generally. Detailed test is pending.
 
All RF Ports are matched to 50 Ohm with -10dB or better return loss generally. Detailed test is pending.
 +
 +
==Ethernet Port==
 +
The Ethernet port on the OctoClock and OctoClock-G allows the device to be connected to the network. When connected, the <code>uhd_find_devices</code> utility can find any OctoClock devices on the network, and the device's firmware may be updated over Ethernet using the <code>octoclock_burn_eeprom</code> utility. In addition, with the OctoClock-G, NMEA strings may be obtained from the internal GPSDO via the UHD API. Note that there is no host CPU in the OctoClock, so it is not possible to SSH into the device.
  
 
==Schematics==
 
==Schematics==
Line 66: Line 82:
 
|-
 
|-
  
|[http://www.mymectronic.com/datasheet/13059_4168782_m9107.pdf M9107]
+
|[http://www.jackson-labs.com/index.php/products/lc_xo LC_XO] [http://www.jackson-labs.com/assets/uploads/main/LC_XO_specsheet.pdf Spec Sheet] [http://www.jackson-labs.com/assets/uploads/main/LC_XO_Manual.pdf Manual]
|SMT OCXO-Based GPSDO
+
|Jackson Labs LC_XO (OCXO)
 
|U206 (2)
 
|U206 (2)
 
|-
 
|-
Line 91: Line 107:
 
|-
 
|-
 
|}
 
|}
 
==Mechanical Info==
 
===Weight===
 
2.6 lbs
 
 
===Drawings===
 
* [[File:cu ettus octoclock cca.pdf]]
 
* [[File:cu ettus-octoclock.pdf]]
 
  
 
==Certifications==
 
==Certifications==
Line 136: Line 144:
  
 
The OctoClock is a USRP-compatible accessory that allows you to easily synchronize up to 8 USRP radios. Multiple OctoClock devices can be combined for synchronization of larger numbers of USRP radios.
 
The OctoClock is a USRP-compatible accessory that allows you to easily synchronize up to 8 USRP radios. Multiple OctoClock devices can be combined for synchronization of larger numbers of USRP radios.
 +
  
 
*'''When would I used the OctoClock'''
 
*'''When would I used the OctoClock'''
Line 154: Line 163:
 
Essentially, anything that requires from synchronization or the distribution of timing information would benefit from the use of the OctoClock.
 
Essentially, anything that requires from synchronization or the distribution of timing information would benefit from the use of the OctoClock.
  
*'''Are there example applications that could benefit from the OctoClock'''
 
 
32-Channel Phased-Array Receiver Built with QR210 - OctoClock a Component in the System
 
 
Afford 8x8 MIMO Testbed
 
 
Share your applications with us and we will add them to the list.
 
  
 
*'''How does the OctoClock work'''
 
*'''How does the OctoClock work'''
Line 167: Line 169:
  
 
The OctoClock-G includes an internal GPSDO (GPS Disciplined Oscillator) which provides an internal source for 10 MHz and PPS from an OCXO high precision oscillator.  Add a GPS antenna  (optional) with a clear view of the sky for GPS Disciplining of the OCXO that futher enhances frequency accuracy of the OCXO and global time synchronization.
 
The OctoClock-G includes an internal GPSDO (GPS Disciplined Oscillator) which provides an internal source for 10 MHz and PPS from an OCXO high precision oscillator.  Add a GPS antenna  (optional) with a clear view of the sky for GPS Disciplining of the OCXO that futher enhances frequency accuracy of the OCXO and global time synchronization.
 +
  
 
*'''Where can I find user manuals for the OctoClock and USRP'''
 
*'''Where can I find user manuals for the OctoClock and USRP'''
Line 173: Line 176:
  
 
Also, here is some documentation on how to use UHD™ to interact with multi-USRP systems.
 
Also, here is some documentation on how to use UHD™ to interact with multi-USRP systems.
 +
  
 
*'''What USRP model do you recommend for MIMO systems'''
 
*'''What USRP model do you recommend for MIMO systems'''
Line 179: Line 183:
  
 
The USRP B100, B200, B210, E100, E110, and E310 can be synchronized with 10 MHz/PPS but are not phase coherent MIMO capable devices. The USRP1 cannot be synchronized with 10 MHz/PPS.
 
The USRP B100, B200, B210, E100, E110, and E310 can be synchronized with 10 MHz/PPS but are not phase coherent MIMO capable devices. The USRP1 cannot be synchronized with 10 MHz/PPS.
 +
  
 
*'''How does the automatic switchover functionality work'''
 
*'''How does the automatic switchover functionality work'''
Line 185: Line 190:
  
 
If neither source is present, the internal, external and status LEDs will not be illuminated and the user will not received valid 10 MHz/PPS outputs.
 
If neither source is present, the internal, external and status LEDs will not be illuminated and the user will not received valid 10 MHz/PPS outputs.
 +
  
 
*'''What do the LED indications mean'''
 
*'''What do the LED indications mean'''
Line 196: Line 202:
 
*GPS Locked - GPS is receiving signals and has valid time/position lock.
 
*GPS Locked - GPS is receiving signals and has valid time/position lock.
 
*Power - Power is applied - smoke is still inside.
 
*Power - Power is applied - smoke is still inside.
 +
  
 
*'''What are the input and output specifications'''
 
*'''What are the input and output specifications'''
Line 204: Line 211:
 
*1 PPS Outputs - Logic-level pulse, 2.5V - 5V
 
*1 PPS Outputs - Logic-level pulse, 2.5V - 5V
  
*'''What is the function of the Ethernet port'''
 
 
Currently, the Ethernet port is non-functional. In the future the Ethernet port may be used to provide a method for reading GPS time and NMEA sentences.
 
  
 
*'''What is the input voltage rating'''
 
*'''What is the input voltage rating'''
  
 
The OctoClock can be powered at any voltage between 6 and 15Vdc.
 
The OctoClock can be powered at any voltage between 6 and 15Vdc.
 +
  
 
*'''Are the design files open source'''
 
*'''Are the design files open source'''

Revision as of 14:42, 21 August 2019

Device Overview

The OctoClock CDA-2990 is an affordable solution for high-accuracy time and frequency reference distribution. The OctoClock accepts 10 MHz and PPS signals from an external source, and distributed each signal 8 ways. This is a useful accessory for users that would like to build multi-channel systems that are synchronized to a common timing source.

Note: The OctoClock CDA-2990 is functionally identical to the previous generation OctoClock, which contained an Ettus Research logo.

Key Features

  • 8-Way Time and Frequency Distribution (1 PPS and 10 MHz)
  • Convenient Solution for Multi-Channel Synchronization
  • Use with MIMO Capable N-Series Devices for Coherent System
  • External 10 MHz/1 PPS Source Required
  • 19" Rackmount – 1U
Product octoclock.jpg
octoclock2.png

Signal Levels

10 MHz output 
1.25 Vpp at 50 ohms, 3.3Vpp at 1M ohms
1 PPS output
20% duty cycle square wave with amplitude 5 V
10 MHz input 
0-20 dBm
1 PPS input
2.5-5 V
octoclock1.png
octoclock3.png


Physical Specifications

Dimension (1U Rackmount)

4 x 17.187x 1.75 inches

Weight

2.6 lbs

Drawings

CAD/STP Models

OctoClock CDA-2990

OctoClock CDA-2990

Environmental Specifications

Operating Temperature Range

  • 0-40 °C

Operating Humidity Range

  • 10% to 90% non-condensing

Input/Output Impedance

All RF Ports are matched to 50 Ohm with -10dB or better return loss generally. Detailed test is pending.

Ethernet Port

The Ethernet port on the OctoClock and OctoClock-G allows the device to be connected to the network. When connected, the uhd_find_devices utility can find any OctoClock devices on the network, and the device's firmware may be updated over Ethernet using the octoclock_burn_eeprom utility. In addition, with the OctoClock-G, NMEA strings may be obtained from the internal GPSDO via the UHD API. Note that there is no host CPU in the OctoClock, so it is not possible to SSH into the device.

Schematics

OctoClock

OctoClock Schematics

Key Component Datasheets

Part Number Description Schematic ID (Page)
ENC28J60−DIG Ethernet Controller U103 (1)
ATmega128 Microcontroller U102 (1)
LC_XO Spec Sheet Manual Jackson Labs LC_XO (OCXO) U206 (2)
SN74AUP1T57 VOLTAGE-LEVEL TRANSLATOR U204, U203 (2)
CDCE18005−PWR Output Clock Programmable Buffer U205 (2)
74HC4020 Binary Ripple Counter U207 (2)
LMZ12001 Power Module U101 (1)

Certifications

RoHS

As of December 1st, 2010 all Ettus Research products are RoHS compliant unless otherwise noted. More information can be found at http://ettus.com/legal/rohs-information

China RoHS

Management Methods for Controlling Pollution Caused by Electronic Information Products Regulation

Chinese Customers

National Instruments is in compliance with the Chinese policy on the Restriction of Hazardous Substances (RoHS) used in Electronic Information Products. For more information about the National Instruments China RoHS compliance, visit ni.com/environment/rohs_china.

Certificate of Volatility

OctoClock

Firmware

The OctoClock's firmware is divided into two image files: octoclock_bootloader.hex and octoclock_r4_fw.hex. All image files can be found here, in version-specific ZIP files. Download the version corresponding to the version of UHD that you're running. You must use at least version 3.9.2.

Downloads

OctoClock Spec Sheet

FPGA Resources

UHD Stable Binaries

UHD Source Code on Github


FAQ

  • What is the OctoClock

The OctoClock is a USRP-compatible accessory that allows you to easily synchronize up to 8 USRP radios. Multiple OctoClock devices can be combined for synchronization of larger numbers of USRP radios.


  • When would I used the OctoClock

The OctoClock is useful for synchronizing multiple USRP devices for high channel count systems.

The following applications can benefit from OctoClock clock distribution:

  • Direction Finding
  • Beamforming
  • Adaptive Beamforming
  • Multiple-In-Multiple-Out (MIMO) Prototyping
  • Geolocation Systems that Use Time-Difference-of-Arrival (TDOA)
  • Multi-Channel, Multi-Static, and Passive RADAR
  • Multi-Band GPS Record and Playback
  • Multi-Band Cellular Monitoring

Essentially, anything that requires from synchronization or the distribution of timing information would benefit from the use of the OctoClock.


  • How does the OctoClock work

The OctoClock accepts 10 MHz and PPS signals from an external source. Active circuits are used to amplify and split the signals 8-ways. Matched-length traces minimize phase differences between all 10 MHz and 1 PPS outputs

The OctoClock-G includes an internal GPSDO (GPS Disciplined Oscillator) which provides an internal source for 10 MHz and PPS from an OCXO high precision oscillator. Add a GPS antenna (optional) with a clear view of the sky for GPS Disciplining of the OCXO that futher enhances frequency accuracy of the OCXO and global time synchronization.


  • Where can I find user manuals for the OctoClock and USRP

Here is helpful document. Sync. and MIMO w/ the USRP

Also, here is some documentation on how to use UHD™ to interact with multi-USRP systems.


  • What USRP model do you recommend for MIMO systems

The USRP N200 or N210 and USRP X300 or X310 are recommended for building high channel count and MIMO systems. These models provide external PPS and 10 MHz reference inputs. The USRP N200 and N210 support the USRP MIMO cable.

The USRP B100, B200, B210, E100, E110, and E310 can be synchronized with 10 MHz/PPS but are not phase coherent MIMO capable devices. The USRP1 cannot be synchronized with 10 MHz/PPS.


  • How does the automatic switchover functionality work

When using the OctoClock-G, the Internal/External switch on the front panel allows the user to choose between the internal GPSDO and external source 10 MHz/PPS source. If the selected sournce is not availble, the device will automatically switch over to the backup frequency source. When switchover is active the corresponding LED indicator will illuminate.

If neither source is present, the internal, external and status LEDs will not be illuminated and the user will not received valid 10 MHz/PPS outputs.


  • What do the LED indications mean

The following list describes the behavior when each of the 6 LED status indicators is illuminated:

  • Internal - internal GPSDO is selected and present.
  • External - external source is selected and present
  • Status - Either the internal GPSDO or external source is selected. If neither source is present this LED will turn off (no signals are output).
  • PPS - selected PPS pulse high.
  • GPS Locked - GPS is receiving signals and has valid time/position lock.
  • Power - Power is applied - smoke is still inside.


  • What are the input and output specifications
  • 10 MHz Input – 0-10 dBm
  • 10 MHz Outputs - ~1.4 Vpp Square Wave, Impedance 50 ohm nominal
  • 1 PPS Input - Logic-level pulse, 2.5V - 5V
  • 1 PPS Outputs - Logic-level pulse, 2.5V - 5V


  • What is the input voltage rating

The OctoClock can be powered at any voltage between 6 and 15Vdc.


  • Are the design files open source

As with all of our products, the driver code is free & open source, and can be found in our UHD repository. The schematics are also available.